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Executive Summary 
 

Already in the present, but even more so in the near future there will be computing power, 
communication devices (cell, WiFi, DSRC) and multiple sensors (speed, acceleration, GPS, 
cameras, radar, sonar, etc.) on standard vehicles. Their primary purpose is for safety and comfort, 
but with small additions these can be used to observe the condition of the infrastructure around 
the vehicle and report it to the responsible agencies. By continuously collecting this data from 
many vehicles throughout the road network the agency acquires a timely and comprehensive 
view of the status of its infrastructure at a low cost and plan the maintenance of it accordingly.  

The main objective of the present project is to develop one such indirect structural health 
monitoring (SHM) approach, in which one makes use of vibration data collected from sensors 
installed on vehicles as they traverse the bridge or other infrastructure, rather than from sensors 
installed directly on the structure. Our work has proceeded in several stages. An initial 
exploratory study (funded by Traffic21) based entirely on mathematical models and 
computational simulations allowed us to demonstrate the feasibility of our indirect monitoring 
approach for these mathematical models and the desirability f testing this technique on physical 
models. Subsequent support from the National Science Foundation enabled us to conduct our 
first experimental study, based on a simple laboratory model of a bridge and a vehicle. Almost at 
the same time we also received funding from the UTC T-SET transportation center for the main 
purpose of exploring and developing different techniques for performing signal analysis and 
classification of the data collected during the course of the experiments. In this project, we have 
not inflicted actual damage to the bridge structure. Instead, we used small, added masses to the 
bridge deck, dampers, or varying support conditions as proxies. In addition, we considered 
temperature as a parameter since it is well known that bridge properties can vary significantly 
with temperature changes.  

Most of our work in the project, especially the feature extraction and classification aspects, 
focused on data recorded during the experiments with the laboratory models. This allowed us to 
develop our detection capabilities in a controlled environment. In order to deal with more 
realistic systems, we selected two additional applications: (i) the 3rd level of the East Garage at 
CMU with a small robot as our vehicle. This set-up has the same general characteristics as the 
laboratory model, i.e., the structure tested consists essentially of a double-T beam with a deck, 
and the vehicle moves longitudinally along the beam; (ii) With the help of the UTC T-SET and 
the collaboration of the Port Authority of Allegheny County, we have begun to collect indirect 
data from Pittsburgh’s Light Rail Line. This application offers the opportunity to continuously 
collect real data and to analyze and classify the data with the objective of detecting damage in an 
actual operational environment. We describe the various activities and results in the main body 
of the report. These are organized into tasks, starting with the laboratory model (Tasks 1, 2, 3) 
followed by the work on the more realistic structures (Task 4). 

Task 1: Demonstrate our ability to identify the condition of a laboratory scale model from 
sensors placed on a model vehicle crossing over the bridge. This task looked at basic changes in 
the condition of the bridge, including the addition of extra mass, the addition of dampers or the 
modification of the boundary conditions.  

Task 2 Consider changes in mass, damping and rotational restraint while subjecting the 
bridge to different temperature conditions. We addressed these issues by collecting additional 
data from our laboratory scale model, while experimenting with new algorithms for data 
analysis.  
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Task 3 (1) Quantify and localize damage on the bridge; (2) consider uncertainty about the 
condition of the bridge. (1) While previous work focused on classification of the state of the 
bridge between discrete groups, in this project we built a regression to consider an infinite 
number of classes with the output describing magnitude and position of the damage.  To address 
part (2), we considered the same data sets as before but only labeled a small portion of the data. 
Here “labeling” refers to identification of the state of the bridge so the algorithm can learn. In 
real scenarios the condition of the bridge is often not known, or worse could be incorrectly 
labeled, so we found algorithms that could handle this uncertainty.  We show that even with only 
10% of the data labeled, our algorithms could learn how to label the unlabeled portions (label 
propagation) and achieve high accuracy.  

Task 4 Collect data from operational structures, including a multistory parking garage on 
Carnegie Mellon’s Pittsburgh Campus, and the bridges along Pittsburgh’s Light Rail Line. This 
task forced us to employ new data collection techniques for handling uncontrolled environments 
and new data management techniques for storing much larger data sets.   

The impact of this project has been two-fold. First we have advanced the state of the art for 
indirect bridge health monitoring, and have made such a low-cost technology more likely. Over 
the last two years, one journal paper has been accepted for publication, one has been submitted 
and is under review, and four peer-reviewed conference papers have been accepted.  Second, this 
grant has helped train three civil engineering students to learn more about signal processing, 
while encouraging one signal processing graduate student to examine applications in 
infrastructure.   
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Background1 
Bridge structural health monitoring (SHM) has been an active research field for over 30 

years. It is a multidisciplinary problem that involves: sensors, data acquisition systems, data 
analysis and data interpretation. In general terms, the objective of bridge SHM is the early 
detection and characterization of damage conditions before they pose a threat to the structural 
integrity of a bridge and the public it serves. An analogy can be made with the medical field 
where the early detection of pathology allows for several treatment options to be undertaken to 
restore health. A late diagnosis might lead to chronic illness or death. If diagnosed properly, 
prognosis and treatment follow diagnosis.  

Problem statement  
The current state of the aging bridge infrastructure in the USA and around the world 

requires more accurate diagnostic tools for a large stock of bridges. There has been an increase in 
public, as well as political, awareness of the current state of the bridge infrastructure. Old and 
new bridges are now under public scrutiny after catastrophic collapses. The collapse of the I-35 
bridge over the Mississippi River on Aug. 1, 2007 is a noticeable example, as well as the 
collapse of other bridges around the globe (e.g., Shershan Bridge, Pakistan, Sep. 1 2007; Harp 
Road Bridge, USA, Aug 15 2007; Loncomilla Bridge, Chile, Nov 18, 2004.). 

The research community has been developing structural health monitoring (SHM) 
techniques to aid in the ongoing bridge management efforts of local bridge authorities. The 
current standard bridge inspection practice is based on biannual visual inspections, which are 
subjective by nature.  Sensor-based SHM is perceived as the technology that could improve the 
current visual inspection process (FHWA-2001).  Monitoring bridge structural systems helps in 
planning different bridge intervention strategies, such as maintenance actions, repair or 
replacement (Frangopol et al. 2008). Moreover, the life-span of the bridge structure can be 
extended (even if the bridge shows deterioration) if the data shows it to be healthy. 

Traditional bridge SHM techniques entail the placement of sensors on the structure for 
measuring physical parameters that are then used as indicators of the structural behavior. SHM 
and damage assessment have been very active research areas, and have motivated several 
excellent review and overview papers, which highlight some of the most relevant approaches 
(e.g., Van der Auweraer and Peeters  2003; Farrar and Worden 2007). Brownjohn (2006) 
describes some general and fundamental objectives for monitoring civil infrastructure and points 
out some historical applications. More specific review topics include wireless, structural health 
monitoring, design of devices, and the trend for localized processing (Lynch, 2007); vibration-
based condition monitoring (Doebling et al. 1998, Carden and Fanning 2004); damage 
identification using inverse methods (Friswell 2006); unsupervised learning (Fulgate et al. 2000, 
Worden and Dulieu-Barton 2004, Worden and Manson 2007); and vibration-based condition 
monitoring methods (Carden and Fanning 2004). 

 Two main approaches of this type have been pursued in recent years. One is a global 
vibrational approach and the other is the local approach (Mal et al 2005). The first looks at the 
vibration of the whole structure, while the latter focuses on the wave propagation along structural 
elements. We refer to these two approaches based on sensors placed on the structure as direct 
approaches. The direct approaches are especially useful when monitoring progression of damage 
of a particular known damage condition, or monitoring a critical member of a bridge structure.  

                                                      
1
 This background section is based around from Cerda’s PhD dissertation. 
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However, the transition of the traditional SHM techniques from the research community 
to the practical field implementation still needs to overcome difficult challenges due mainly to 
technical and economic considerations (Farhey 2005, 2007). One such real world application of a 
monitoring program is on the Lehigh River Bridge, SR-33. It was reported that during the three 
year monitoring program, the direct cost of the equipment made up 40% of the total monitoring 
cost. For a long term monitoring program, this direct cost must be addressed several times during 
the lifetime of the structure, due to software or equipment obsolescence. The other 60% of the 
cost is related to labor and other related items (Frangopol et al. 2008). Some of the challenges of 
the direct approach include: labor intensive sensor deployment and maintenance, sensor system 
cost, powering the sensors system, data transmission and data interpretation.  

Some of these challenges are currently being addressed by the research community. With 
respect to the power supply of the sensor systems, a popular approach for direct monitoring is 
energy harvesting to make the system self-reliant. Among the power options, one can consider 
solar energy (Alippi and Galperti 2008) and vibration-based approaches (Beeby et al. 2006). 
However, other challenges, such as the lifespan of the sensor systems with respect to the lifespan 
of the sensed structure and deployment and maintenance costs, are unlikely to be solved with the 
same approach. Electrical systems and electronics are far more vulnerable to ambient conditions 
than structural elements and therefore less reliable than the system they are sensing. The threat of 
atmospheric conditions can also be extended to involuntary damage and vandalism. Depending 
on the socio-economic condition of a particular country, leaving electronic equipment 
unsupervised has to be carefully planned for and designed to prevent theft of the equipment.  

The direct approach remains impractical to this day as a first diagnostic scan, especially 
when one considers the large bridge population of buildings that needs to be inspected (e.g. 
600,000 bridges over 20 ft.) in the US bridge inventory.  

Proposed solution to the problem: an indirect approach  
The need for more efficient techniques for the SHM of bridges has led to the development 

of additional approaches to the direct method. One such approach is the indirect SHM, so-called 
because it makes use of vibration data collected from sensors installed on vehicles crossing the 
bridge, rather than from sensors installed on the bridge itself (Lin and Yang 2005). 

Figure 1 depicts the direct and the indirect SHM approaches. In principle, the vehicle-
bridge interaction data captured by the moving vehicle provides information about the bridge, 
which can be used for diagnostic purposes. In other words, the indirect approach uses vehicle 
vibration data qvi(t) for diagnosing a bridge’s condition rather than data qb(t) collected directly 
from the bridge. The use of signal processing techniques and machine learning algorithms allow 
one to explore the feature space of the signals collected from the vehicle and extracting vehicle-
response patterns for bridge SHM. The indirect SHM approach was conceived only in the last 
decade, and is currently being actively researched.  

 
Figure 1: Direct and indirect SHM different in terms of sensor location. 
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The indirect approach can be viewed as being complementary to the direct approach. 
However, it has several conceptual advantages over the direct approach. The indirect approach 
allows the interrogation of a large bridge stock; it can be powered by the vehicle electrical 
system; it has no need to stop traffic for initial instrumentation of the structure or on-site 
maintenance actions; it can leverage the fleets of smart vehicles that communicate among 
themselves for other purposes such as: collision avoidance, traffic optimization, emergency 
localization or autonomous driving. The indirect approach is a data-based approach that can 
capture patterns of complex phenomena from large amounts of data. It takes advantage of 
advances in signal processing and pattern recognition algorithms.  

Considering the practical future implementation of this approach, two possible scenarios 
might be feasible to obtain instrumented vehicle data. The first scenario that could be 
implemented over the medium-term considers the instrumentation of a specific fleet of vehicles 
that interrogate bridge structures as they go about their daily business. In this scenario, possible 
candidate fleets would be utility trucks or other type of public vehicles, such as transportation 
buses or mail trucks. They would be equipped with accelerometers, GPS, data acquisition 
systems and data transmission systems in order to determine their precise location and to collect 
their dynamic interaction data. The second scenario can be considered as a long-term vision. In 
the future, commercial vehicles will be readily equipped with a great number of sensors for 
different purposes. Some of the instrumentation that vehicles already have today are tire pressure 
sensors, accelerometers for adaptive suspension systems, GPS, front and rear cameras, internet 
connection and onboard computers. Akinci et al. envisioned taking full advantage of the 
opportunities that arise from having on-line vehicles making their data accessible for public 
interest (Akinci et al. 2003). 

In the following paragraphs, we briefly review recent research efforts related to indirect 
SHM. 

The indirect SHM approach was introduced by Yang et al. (2004), to extract the fundamental 
frequencies of a bridge. Yang and his colleagues derived a closed-form solution for a single-
degree-of-freedom oscillator moving over a single-span, simply supported beam by assuming 
that the beam vibrates only in its fundamental mode. The obtained solution allowed for the 
identification of the two main dimensionless parameters that affected the bridge response. These 
parameters were S and , S = v/Lb, a normalized vehicle velocity, where v = vehicle velocity, 
L = length of beam, and  b= bridge’s natural fundamental frequency; and  = b/v, where v 
is the vehicle (oscillator) vertical natural frequency. Yang et al. (2005) then expanded the closed-
form solution presented in 2004, to include several mode shapes as the basis for the dynamic 
response of the beam. 

An experimental validation of the vehicle-based approach for extracting the natural 
frequencies of a bridge was conducted using an instrumented two-wheeled cart attached to a 
vehicle traveling over a simply-supported girder bridge; a heavy load truck was used to act as 
oncoming traffic (Lin and Yang 2005). The authors were able to identify the fundamental 
frequency of the bridge from the cart data, even with the simulated oncoming traffic. Toshinami 
et al (2010) also aimed at extracting bridge frequencies from vehicle response.  

McGetrick et al. (2009) developed a numerical 1D model and studied the variations of 
dynamic parameters using the data derived from the numerical model.  The authors report high 
sensitivity in the peak magnitude frequencies of the acceleration power spectral density to slight 
changes in the bridge structural damping. The same authors used laboratory model data 
(McGetrick et al. 2010) to identify the predominant frequencies of bridges and found good 
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agreement between the signals acquired directly from the bridge and those from the vehicle as 
the vehicle travels over the bridge.  

Kim and Kawatani (2008) presented an approach for accurately identifying damage on a 
bridge structure. This approach requires data from both the vehicle and the bridge. It was first 
explored with numerically simulated data and later through experiments (Kim et al. 2010). A 
hypothesis-testing scheme that looks for patterns in the bridge response from a laboratory 
experiment identified successfully only severe damage conditions on the bridge structure 
(Isemoto et al 2010).  

Based on these studies, it is reasonable to conclude that vehicle responses collected from a 
vehicle while travelling over a bridge contain useful information of the structural condition of the 
bridge. However, past studies of the indirect approach concentrated mainly on identifying certain 
interaction properties and indexes, such as the fundamental frequency of the bridge, power 
spectral density magnitude variations from vehicle data, the agreement between vehicle and 
bridge data predominant frequencies or the identification of severe structural changes. Thus, 
there is a need to complement the ongoing efforts with more robust signal processing and 
machine learning techniques that will allow one to detect small variations in the vehicle signature 
response and, therefore, allow exploration of the use of the indirect approach for diagnostic 
purposes.  

The main objective of this work is to explore the use of the indirect method for developing a 
practical bridge SHM approach enhanced by signal processing and pattern recognition.  
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Task 1: Validation of the Indirect Approach with the Laboratory Scale 
Model2 

We hypothesize that an array of sensors, mounted on moving vehicles that travel across the 
bridge of interest, can be helpful in identifying structural damage and thus serve as an indicator 
for more detailed analysis using a physical model. This approach is referred to as indirect health 
monitoring. 

Yang and Chang (2009) reported results associated with field experiments where the first two 
natural frequencies of a bridge were extracted from the vehicle response by using empirical 
mode decomposition. Bu et al. (2006) measured the dynamic response of a vehicle moving on 
top of a simply supported Euler–Bernoulli beam. The vehicle served as a sensor and force 
transducer to detect damage defined in terms of the reduction of flexural stiffness. The model 
incorporated noise measurements, road surface roughness, and model errors such as 
underestimating vehicle parameters or bridge flexural stiffness.  

Kim and Kawatani (2008) developed a pseudo-static damage detection method that makes 
use of the coupled vibration of a vehicle-bridge system. It requires data collected from both the 
bridge and the vehicle to characterize the damage. A numerical model that included the roadway 
roughness effect was used to test the approach. It was subsequently validated experimentally for 
different vehicle speeds and different amounts of reduction of the moment of inertia of the 
girders. McGetrick et al. (2009) modeled a simplified quarter car-bridge interaction to extract the 
fundamental natural frequency and corresponding damping of the bridge from the spectra of the 
vehicle accelerations. They found that better accuracy was achieved at lower speeds and 
smoother road profiles. Moreover, the magnitude of the acceleration power spectral density’s 
peaks decreased with increasing bridge damping and this decrease was easier to detect with a 
smoother road profile. This work was validated experimentally by observing the effects of a 
vehicle moving across a steel girder that included a road surface profile. The effects of varying 
vehicle model mass and speed were investigated as well (McGetrick et al. 2010).  

Isemoto et al. (2010) developed a hypothesis-testing scheme for damage detection based on 
the bridge vertical acceleration data induced by a passing vehicle. An experimental vehicle-
bridge model, including roadway roughness, was used and only severe damage scenarios were 
identified. Miyamoto and Yabe (2011) exploited the vibration induced by a public bus for the 
indirect health monitoring of existing short- and medium-span reinforced/prestressed concrete 
bridges. The tests demonstrated a correlation between the vehicle vertical acceleration and the 
bridge vibration at midspan. By means of a numerical 3D finite element model, the distribution 
of characteristic deflection values was found for a particular driving speed and two severe 
damage scenarios.  

Yin and Tang (2011) proposed a finite-element method to simulate the interaction of a 
vehicle and a cable-stayed bridge. The vertical displacement from the vehicle was used to 
identify tension loss and deck damage. The relative displacement of a passing vehicle of a bridge 
with known damaged conditions is used to generate a vector basis.  The proper orthogonal 
decomposition on the relative displacement of a vehicle passing a bridge with an unknown 
damage condition is optimized with the known basis, and parameters of the unknown damaged 
bridges are reconstructed. Finally, Sirigoringo and Fujino (2012) proposed an indirect approach 
to estimate the fundamental natural frequency of a bridge using the response of a passing 
instrumented vehicle. The method was validated experimentally on a full-scale simply supported 

                                                      
2
 Task 1 section is based on Cerda’s PhD dissertation.  
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short span bridge by using a light commercial vehicle instrumented with accelerometers. The 
spectra of the vehicle’s dynamic responses while crossing the bridge were analyzed to reveal the 
first natural frequency of the bridge when the vehicle moved with constant velocity. The 
experimental study considered traveling speed ranging from 10 to 30 m/s. 

All of the above indirect monitoring studies aimed at identifying the dynamic parameters of a 
bridge by either observing a single damage-sensitive feature or by optimizing model-based 
damaged sensitive vectors. The authors of these studies, however, did not report on detecting 
various types of damage conditions, the confidence with which the detection was ascertained, or 
the effects of different boundary conditions, weather patterns, traffic loads, or different vehicle 
speeds on the structural diagnosis.  

Results are presented from a study that aims at bridging this gap. The long-term objective is 
to create a decentralized monitoring approach using fleets of vehicles that can continuously store 
or send data about the bridges over which they travel. In the laboratory, a bridge model is 
subjected to different vehicle speeds, damage scenarios, and structural boundary conditions. In 
addition to the indirect measurement of the bridge motion obtained through the vehicle vibration, 
other three sensors were placed directly on the bridge. In contrast to previous studies, the indirect 
and the direct data were used independently. This allows comparing the indirect and the direct 
strategies and to evaluate the effectiveness of our indirect damage detection algorithm.  

Experimental Setup and Protocol 
A laboratory experimental setup was built to collect data from a vehicle, which could be used 

to detect changes in the condition of the bridge. Using this model, acceleration data from a 
bridge structure and a vehicle passing over it can be collected and later analyzed for 
characterizing vehicle-bridge interaction patterns. The complete experimental setup consists of 
mechanical components that make up the bridge and vehicle system, a vehicle motion control 
system, and data acquisition equipment. The different mechanical components resemble a simply 
supported bridge structure and a four-wheeled vehicle with an independent suspension system at 
each wheel. The motion control equipment is able to move the vehicle over an acceleration ramp, 
a bridge and a deceleration ramp, causing the vehicle to reach a target speed before the end of the 
acceleration ramp, then maintain that velocity over the bridge, followed by a deceleration of the 
vehicle so that it stops at the end of the deceleration ramp. The data acquisition system records 
accelerations at different locations on the vehicle and the bridge, as well as the position of the 
vehicle. This experimental setup was inspired by the work of Kim et al. (2010).  

An overview of the setup is shown in Figure 2. The vehicle, approximately in the middle of 
the figure, is pulled by a belt system. The vehicle was instrumented with Vibra-metrics 
accelerometers (Model 5102) powered by cables supported by a cable delivery system that 
moves parallel to the vehicle. The cables and the vehicle are propelled by a motor at the leftmost 
part of the experimental setup.  

The travelling path of the vehicle corresponds to the acceleration/deceleration ramps and the 
bridge as labeled in Figure 2a. The simply supported bridge structure is in the middle of the 
travelling path. Below the simply supported bridge there are two reaction beams that are used to 
support the bridge reactions and the added dampers. 
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Figure 2: Experimental setup.  
a) General lateral view. b) Bridge bottom view. c) Bridge cross section. 

Details of the Bridge and Vehicle Models  
The bridge is simply supported by a roller support at the left and a pinned support at the 

right. The vehicle enters the bridge from the left. The whole system is constructed to act as a 
closed force loop system. The longitudinal forces generated by the motor to move the vehicle are 
transmitted between the two supports by two connecting beams labeled as “reaction beams” in 
Figure 2a. The bridge structure is instrumented with three 5102 Vibra-metrics accelerometers as 
in Figure 2b. The sensors are equally spaced along the longitudinal direction of the bridge and 
named accordingly as B1/4L, B1/2L and B3/4L where L=2438 mm. The reaction beams act as a 
support for localized dampers that connect to the bridge structure as in Figure c. The bridge deck 
consists of an aluminum plate, and two angle beams act as the bridge girders. On top of the plate 
two angle beams serve as rails for the travel path of the vehicle. Detailed dimensions of the 
bridge section are shown in Figure 2c.  

The bridge has a total mass of 18.3 kg, a fundamental natural frequency of 7.23 Hz, a 
fraction of critical damping of 3.6 percent. These are the properties of the bridge in the pristine 
condition, later referred to as Scenario 1. 

Figure 3a shows a 3D view of the vehicle constructed for the experimental setup with the 
main components labeled. The vehicle was instrumented with two accelerometers connected to 
the suspension shafts in order to record the acceleration at the wheel level and with two 
accelerometers placed on the suspension to acquire data filtered by the suspension system. To 
keep the symmetry of the vehicle, two calibrated weights were placed on top of the un-sensed 
wheel shafts. Similarly to the bridge structure, the vehicle was built mainly with aluminum parts. 

Two reference points are labeled on the longitudinal direction of the vehicle as points A 
Vehicle (A.V) and B Vehicle (B.V). A top view of the vehicle is shown in Figure 3b. The length 
and width of the vehicle as well as the labels assigned to the four sensors are also indicated. The 

A B 
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sensor labels are defined by their position and location to the reference point. Suspension A.V 
and Suspension B.V are labeled S.A.V and S.B.V, respectively, and the two wheel level sensor 
locations are labeled W.A.V and W.B.V. A picture of the model vehicle is shown in Figure 3c.  

The frequency of the A.V and B.V axles of the vehicle were determined through free 
vibration experiments on the suspension. These experiments were performed on the vehicle 
when separated from the belt of the vehicle motion control system. The frequencies were 
obtained by averaging the power spectra of five free vibration experiments; the results are 
summarized in Table 2.  

 
Figure 3: Experimental vehicle CAD drawings. (a) Parametric view. (b) Top view. (c) Vehicle picture. 

Table 1: Vehicle properties. 
Vehicle weight [kg] 4.8 
A.V axle 
frequency[Hz] 

5.0 

B.V axle 
frequency[Hz] 

5.5 

 

Motion Control and Data Acquisition Equipment 
A National Instruments® PXI system running in LabView® was assembled to operate the 

instrumented vehicle and to allow for data acquisition and storage. The system consisted of a 
PXI Chassis (NI PXI 1031) with a motion control card (NI PXI 7342), a motion interface (UMI 
7772), a stepper drive (P70360) and a dual shaft stepper motor (NEMA 34). A feedback loop for 
position was achieved with an encoder. The acceleration data were digitized and stored for post-
processing using two digitizers (NI 9234).  

Protocol 
Three different types of “damage” scenarios were designed: 1) variations on the support 

condition by imposing rotational restraints, 2) increase of damping at different locations, and 3) a 
mass increase at the midspan. For each kind, four levels of severity were devised in order to 
obtain a total of 12 different damage scenarios. Table 2 shows the twelve conditions of damage 
(thirteen in total). For each case the resonance frequency and the critical damping are reported 
and compared to the baseline, i.e. Scenario 1. For all cases, the fundamental natural frequency of 
vibration and the damping coefficient are determined by means of conventional free-vibration 
experiments.  

The rotational restraint mechanism was built into each of the four beam supports of the 
bridge model. As shown in Figure 4a, an aluminum bar (12x1x1/8 inch) was attached to the main 
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girder of the bridge at one extreme and connected to the support at the other extreme to provide 
vertical restraint. The plate was drilled down to 6.35 mm [1/4 in] with 12.7 mm radius [1/2 in] to 
provide only a partial restraint. 

 
Figure 4: Detail 1 – Roller support - Rotational restraint (a) technical drawing and (b) picture. 

Variation of the rotational restraints simulates the case of rubber bearings becoming 
stiffer in time or steel corrosion occurring on rocker supports. This condition is denoted as frozen 
bearings and it is a common cause of undesired stress in the structure, and, therefore, a reduction 
in the load capacity. In Table 2, the variations of the rotational restraints are described as 
scenarios 2 to SC5. In Scenarios 2-5, one, two, three and all four supports are restrained, 
respectively. As expected, the greater the number of rotational restraints, the higher the 
fundamental frequency, which provides an indicator of change to the bridge structure. 
The variation of localized damping is achieved by adding dampers to the bridge at locations 
schematized in Table 2 (Scenarios 6 to 9). A set of AIRPOT adjustable dampers were used. They 
were calibrated to provide the same damping coefficient. In Scenarios 6-9, one, two, four and six 
dampers, respectively were attached to the bridge structure as depicted in the schematics of 
Table 2. 
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Table 2: Damage scenarios. 

Schematics SC f  [Hz] % f 
shift %ʓcrit 

% ʓ 
shift 

 1 7.23 - 3.63 - 

 2 7.46 3.17 6.34 74.9 

 3 7.66 6.00 6.45 77.8 

 4 8.11 12.2 7.97 119 

 5 8.56 18.4 9.43 158 

 6 7.24 0.17 8.52 134 

 7 7.25 0.28 11.3 211 

 8 7.28 0.73 26.4 629 

 9 7.30 0.98 31.4 766 

 10 7.19 0.56 4.44 22.4 

 11 7.18 0.66 4.34 19.5 

 12 7.14 1.29 4.07 12.2 

 13 7.09 1.85 4.37 20.5 
 

Finally, the concentrated mass at the midspan of the structure consisted of weights equal to 50 g, 
100 g , 200g and 300 g. As expected, the presence of the mass decreased the fundamental 
frequency of vibration of the structure. 

Eight different vehicle speeds, varying from 1 m/s to 2.75 m/s, were considered for each 
damage scenario. 

Signal Analysis and Classification 
In general terms, the task of distinguishing various bridge conditions is a signal-processing 

task of classification. The classification task is first described in general, and then we explain 
how it was used in our setting. Assume a real signal x of length N, i.e., x  RN  (see Original 
signal in Figure 5). The problem, then, can be formulated as that of designing a map from the 
signal space of vibrational signals NX R to a response space of class labels Y {1,2,...,C}  (in 
Figure 4 these are Damaged and Pristine labels). That is, the decision :d X Y is the map that 
associates an input signal with a class label.  

 A general classification system consists of a feature extractor and a classifier (see Figure 5). 
Since the dimensionality of the input space is typically large, the feature extractor is introduced 
to reduce this dimensionality by setting up a feature space kF R  where k N between the 
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input space and the response space. The feature extractor is the map defined as :f X F and the 
classifier as a map :g F Y . 

 
Figure 5: General classification system. 

Preprocessing 
Figure 6 shows the signal obtained from the vibration of the vehicle, from the time when it 

starts moving, through its motion across the bridge, until it is brought to a stop. The only relevant 
information for the bridge characterization, however, is that of the vehicle moving across the 
bridge. The reference start time was chosen as the moment when the rear wheels enter the bridge 
and as the end time the instant when the front wheels exit the bridge. That portion of the signal is 
highlighted in Figure 6a-d by the two vertical lines. The extracted portions of the signals are then 
normalized to have zero mean and unit variance. 

 
(a) Sensor B ½ L, Pristine.    (b) Sensor B ½ L, Damaged. 

 

  
(c) Sensor WBV, Pristine.    (d) Sensor WBV, Damaged. 

Figure 6: Time-domain signals. 

Feature extraction 
A linear structural system can be characterized in the frequency domain by its predominant 

natural frequencies, and their corresponding mode shapes and damping values. We explore 
therefore the use of frequency spectra characteristics for damage detection.  
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Considering the fundamental natural frequencies of the damage scenarios and the vehicle 
main bouncing frequency, we limited the analysis frequency spectrum to up to 33 Hz. For 
example, looking at the spectrum of the signal in Figure 7 for signals from two different 
scenarios, a pristine and a damaged one, we see that potentially we could tell responses apart 
from separate sensors by looking at magnitudes at certain characteristic frequencies. We thus 
decided to use frequencies as features, hoping to distinguish among different scenarios. Our task 
is then to find a set of features to maximize differentiation between classes. 

 
(a) Two scenarios, sensor B ½ L.       (b) Two scenarios, sensor W.B.V. 

Figure 7: Discrete Fourier transform of the signal. 

Since the acceleration signal contains a large number of spikes and other transient 
signals, the spectra are noisy with little consistency between runs. To reduce noise and keep non-
transient frequencies of interest, a typical approach is to average the spectra across frequency.  
Averaging the frequency spectra is a well-known technique used in noisy signal processing. For 
example, on radar signal analysis, a redundant number of antennas capture noisy signals from the 
same source and average them to increase the signal to noise ratio.  

After averaging, we calculate the frequency-domain energy distribution for each scenario. 
This technique relies on the assumption that each scenario has its unique energy distribution in 
the frequency domain. Since we wish to tell classes apart and not individual runs, we average all 
the energy distributions from the same class and use the mean energy distribution as the 
representative member of that class (see Figure 8). 

 
(a) 2 scenarios, sensor B ½ L.    (b) 2 scenarios, sensor W.B.V. 

Figure 8: Mean energy distribution (normalized to unit energy). 

Let ( )
1{ } cNc

i ix   be a set of signals with cN  samples belonging to Class c . The Fourier energy 
map is 
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where w denotes Fourier basis vector and j denotes the frequency band. To evaluate the power of 
discrimination of every Fourier basis vector, we need a discriminant measure D  to evaluate the 
power of discrimination. We will assume that higher discriminant power provides higher 
discrimination between classes.  

For the j th Fourier basis vector, the power of discrimination   is denoted by 
1({ ( )} )C

j c cD j    .      (2) 

There exist numerous choices for the discriminant measure; we use J-divergence 
(Kullback and Leibler 1951). Let 1{ }n

i ip p  , 1{ }n
i iq q  be two nonnegative sequences with 

1i ip q   , J-divergence between p  and q , 

1 1
( , ) log log

n n
i i

i i
i ii i

p qJ p q p q
q p 

  
    

(3) 

Figure 9 shows a graph of the discriminant power between the frequency signals previously 
depicted in Figure 8. 

(a) Sensor B ½ L.            (b) Sensor W.B.V. 
Figure 9: Discriminant power (normalized to unit discriminant power). 

To help understand the feature selection method, we summarize our assumptions and 
conclusions thus far: 1) to differentiate signals from different scenarios, we use frequencies as 
features. 2) if the discriminant power is higher, it is easier to discriminate between classes. The 
discriminant power will thus predict how well a feature will perform during classification; 3) a 
small number of frequencies provide most of the discriminative power; in other words, the 
frequency feature set is sparse. Only those frequencies that have large discriminative power are 
selected (this is called nonlinear approximation); see Figure 10. 
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Figure 10: Summary of feature extraction process. 

This selection method performs nonlinear approximation in the Fourier domain and is 
data adaptive. Different data may give different frequency information and different discriminant 
powers. Since this method learns from the data and always chooses the frequencies with large 
discriminant power, it is more robust than traditional linear approximation. 

Figure 11 shows the first 3D feature space. Blue circles denote the pristine scenario and 
red asterisks the damaged scenario. We see that with just three Fourier discriminant basis 
vectors, it is easy to separate the two classes. 

(a) 2 scenarios, sensor B ½ L.   (b) 2 scenarios, sensor W.B.V. 
Figure 11: Clustering of two scenarios. 

Classification 
The second part of a classification system is the classifier itself. In this process we take as 

input a feature vector and output a class label. The classification problem here is called 
supervised learning, as a labeled training set is given. Different classifiers are available, such as 
naïve Bayes, neural networks and many others (Duda et al 2000). In this work the support vector 
machine (SVM) was selected, which is described next. 

When looking for the best boundary between classes, it is desirable to achieve two things: 
1) find the boundary that gives high classification accuracy; 2) avoid overfitting. To satisfy these 
two requirements, SVM maximizes the margin, which means the distance between a decision 
boundary and a data point, and expresses it as a function of the weight vector and bias of the 
separating hyperplane, which is used to separate the space into two half spaces. In addition, there 
is low risk of overfitting because SVM produces a linear boundary.  

In each scenario, data for 32 runs was collected, out of which 3 were averaged, yielding 
   
 =4960 available samples for each scenario. As our dataset, 1000 out of 4960 samples were 
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Algorithm (Fourier Discriminant Basis Vectors Selection) 

Task: Find ( )k n  most discriminant Fourier basis vectors 

Given a dataset consisting of C  classes of signals 
( )

1 1{{ } }cNc C
i i cx    

Step 1: Take the DFT of x. 

Step 2: Construct Fourier energy map c for 1,...,c C  

Step 3: Determine the power of discrimination 1({ ( )} )C
j c cD j     for every Fourier basis vector jw  

Step 4: Order Fourier basis vectors by their power of discrimination. 

Step 5: Use ( )k n most discriminant Fourier basis vectors for constructing classifier 

http://en.wikipedia.org/wiki/Half_space
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chosen for each scenario. 20-fold cross validation was performed. Each time, 2000 data samples, 
consisting of 1900 training samples and 100 testing samples, were used to create and test the 
SVM-based classifier. A Fourier discriminant basis search algorithm was used and the top 5 
frequencies that provide the largest discriminant power were selected as features. Then a kernel 
SVM was used as the classifier. 

Classification Results  
The results of the classification experiments are presented and discussed in terms of the 

classification accuracy, which is defined as the number of test samples correctly classified 
divided by the total number of test samples.   

For the two classes defined, pristine and damaged, scenarios 2-13 belonged to the latter class. 
The data collected from all seven accelerometers were used.  

Figure 12 shows the variation of the average classification accuracy for different variables. 
Figure 12a shows the average across the different severities, speeds and sensor locations for each 
damage type. The three bridge sensors, B1/4L, B1/2L and B3/4L, are averaged and referred to as 
“Bridge”, the two sensors at the wheel level,  (W.A.V and W.B.V) are averaged and referred to 
as “Wheel” and the two sensors at the suspension level,  (S.A.V and S.B.V) are averaged and 
referred to as “Suspension”. The standard deviation across the averaged variables is shown at the 
top of each bar. An average classification accuracy for all the sensors for each damage type is 
depicted with a black line and corresponding percentage.   The baseline in Figure 12a and b is 
50%, which is the expected probability of randomly choosing between two labels (pristine or 
damaged). Classification accuracy values of over 90% are obtained despite the subtle changes 
introduced in the bridge structure. The amount of change inflicted was deliberately small to test 
the detection capability of the combined indirect approach using the signal processing techniques 
described in Section 0. The signals from the sensors located at the wheel level were classified 
consistently across the different damage types, and more accurately than those from the sensors 
located on the bridge or on the vehicle at the suspension level.  

The classification results in Figure 12b show how the average classification accuracy for all 
damage scenarios varies for different vehicle speeds. Similarly to Figure 12a, each bar represents 
the mean accuracy classification across the different damage scenarios. At the top of each bar, 
the corresponding standard deviation is shown. Looking at Figure 12b, one can see that there is a 
jump between the first four speeds, between 1 and 1.75 m/s and the four higher speeds from 2 to 
2.75 m/s. The average across the two groups of speeds is shown by a black line and 
corresponding percentage. There is about a 7% difference in classification accuracy between 
these two speed ranges. This classification accuracy difference is consistent for the average 
classification accuracy of the sensors at the different locations (i.e., Bridge, Wheel and 
Suspension). 
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Figure 12: Classification accuracy results (a) Average by damage types. (b) Average by speeds. 

 
Figure 13 illustrates the sensitivity of the classification method to different severity levels of 

damage for each scenarios. Figure 13a, b and c shows the average classification for the different 
damage severity levels for the rotational restraint damage type for different vehicle speeds. For 
all of these graphs, the thickness of the line depicts the level of damage, with the thinnest line 
indicating the least amount of damage inflicted (e.g., only one of four rotational restraints 
invoked in SC2) and the thickest line indicating the maximum amount of damage inflicted (e.g., 
all four rotational restraints invoked in SC5). 

Figure 13a, b and c shows the average classification accuracy for each rotational restraint 
damage severity level for the signals from all the sensors on the bridge, all the sensors on the 
suspension, and all the sensors on the wheel, respectively. Figure 13d, e, and f break the results 
down for each sensor and show the average classification accuracy for each rotational restraint 
damage severity level for each signal from the three sensors on the bridge, B1/4L, B1/2L and 
B3/4L, from the two sensors on the suspension, S.A.V and S.B.V, and from the two sensors on 
the wheel, W.A.V and W.B.V, respectively.  
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Figure 13: Classification results for rotational restraint scenarios (a,d) Bridge sensors, (b,e) Suspension sensors (c,f) 
Wheel sensors.  

 
As can be seen from the graphs in Figure 13, the classification accuracy for SC2 is lower 

than for the other rotational restraint scenarios (SC3, SC4 and SC5), and increases as the severity 
of damage increases. For SC2, there is a variation in the classification accuracy with respect to 
the speed. However, the more severe rotational restraint scenarios seem to be more independent 
of the speed with high classification accuracy for low speeds and a slight parabolic decrease for 
higher speeds. No significant difference in the classification accuracy is apparent in Figure 13 
regarding the sensor location. This shows that in terms of classification accuracy, the signal 
processing approach performs as well with sensor data from the vehicle (sensor or wheel) as with 
sensor data directly measured on the bridge.  In other words, the results would indicate that in 
this particular set of experiments, the indirect approach has a classification accuracy that is as 
good as that of the direct approach. 
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Figure 14: Classification results for damping increase scenarios. (a,d) Bridge sensors, (b,e) Suspension sensors (c,f) Wheel 
sensors. 

Figure 14 and Figure 15 are similar in nature to Figure 13, but display the classification 
accuracies for the two other damage types explored: the scenarios with increasing amounts of 
damping and with increasing amounts of mass.   Figure 14a b and c shows Scenario 6, the 
scenario with the single damper, as the one with the least classification accuracy across all 
speeds. In terms of effects due to changes of vehicle speed, a decrease in the classification 
accuracy appears to occur when the vehicle velocity is 2 m/s as shown in Figure 14a. In general 
terms, the same observations from Figure 13 apply to Figure 14. There is a slight decrease of the 
classification accuracy with higher speeds, and the classification accuracy seems to be 
independent of the sensor location; that is, there is little difference in the classification capability 
between the direct and the indirect approaches. Figure 15 shows the classification results for the 
scenarios with a mass increase at the midspan. Even though the inflicted change in the bridge 
structure is quite subtle, the classification accuracy is high, especially for the lower speeds. The 
same observations made for Figure 14 can be made for Figure 15 regarding the variation of 
classification accuracies with respect to the vehicle speed and the sensor locations. 
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Figure 15: Classification results for concentrated mass scenarios. (a,d) Bridge sensors, (b,e) Suspension sensors (c,f) 

Wheel sensors. 

Discussion  
The damage detection capability of an indirect monitoring approach based on data collected 

from moving vehicles was proposed and evaluated for bridge monitoring by applying 
classification to experimental data taken from a laboratory vehicle-bridge physical model.  

To perform numerous test repetitions, a fully automatic vehicle-bridge model needed to be 
built. In this study, the amount of experimental data samples is significantly greater than that 
from previous experiments. Each scenario was run 32 times at eight different velocities. Three 
different damage types were built into the experimental setting, and each damage type had four 
different severity scenarios. 

The synchronized acceleration data from the bridge and the vehicle, and the vehicle position 
data, allowed for the comparison of the direct and indirect approaches in terms of the accuracy 
with which each could classify the existence of damage for different extents of damage.  

A feature extraction technique based on averaging the power spectrum from a set of data was 
used to achieve very high noise reduction. Then, features extracted from the Fourier domain 
were automatically chosen from the denoised data samples based on their significance and 
classified using an SVM classifier. 

1 1.25 1.5 1.75 2 2.25 2.5 2.75
50

70

80

90

95

100

Classif Accuracy %

 

  Mean bridge sensors

(a)

Concentrated mass scenarios

 

 

SC10

SC11

SC12

SC13

1 1.25 1.5 1.75 2 2.25 2.5 2.75
50

70

80

90

95

100

Classif Accuracy %

 

  Bridge sensors

(d)

Concentrated mass scenarios

 

 

SC10  B 1/4L

SC11  B 1/4L

SC12  B 1/4L

SC13  B 1/4L

SC10  B 1/2L

SC11  B 1/2L

SC12  B 1/2L

SC13  B 1/2L

SC10  B 3/4L

SC11  B 3/4L

SC12  B 3/4L

SC13  B 3/4L

1 1.25 1.5 1.75 2 2.25 2.5 2.75
50

70

80

90

95

100

Classif Accuracy %

 

           Mean suspension sensors

(b)
 

 

SC10

SC11

SC12

SC13

1 1.25 1.5 1.75 2 2.25 2.5 2.75
50

70

80

90

95

100

Classif Accuracy %

 

   Suspension sensors

(e)
 

 

SC10  S.A.V

SC11  S.A.V

SC12  S.A.V

SC13  S.A.V

SC10  S.B.V

SC11  S.B.V

SC12  S.B.V

SC13  S.B.V

1 1.25 1.5 1.75 2 2.25 2.5 2.75
50

70

80

90

95

100

Classif Accuracy %

Speed [ m/s ]

  Mean wheel sensors

(c)
 

 

SC10

SC11

SC12

SC13

1 1.25 1.5 1.75 2 2.25 2.5 2.75
50

70

80

90

95

100

Classif Accuracy %

Speed [ m/s ]

  Wheel sensors

(f)
 

 

SC10  W.A.V

SC11  W.A.V

SC12  W.A.V

SC13  W.A.V

SC10  W.B.V

SC11  W.B.V

SC12  W.B.V

SC13  W.B.V



29 
 

High classification accuracy was achieved across three distinct types of changes inflicted into 
the bridge structure: 1) a change in the support conditions obtained by introducing rotational 
restraints at the supports; 2) an increase in the damping of the bridge structure; and 3) a localized 
mass increase at the midspan of the bridge. 

The severity of the changes inflicted in the bridge structure was consistent with higher 
classification accuracy. For example, SC3, SC4 and SC5 imposed more significant changes into 
the bridge structure than SC2, and consistently higher classification accuracy was obtained. 
Nonetheless, the, classification accuracy achieved for the subtle change inflicted on SC2 is on 
average above 85%. 

The detection of the various changes in the bridge structure was quite insensitive to the 
vehicle speed. This effect can be important for practical applications where vehicle speeds 
cannot be readily controlled. However, a small jump was observed between the lower and higher 
speeds, where the classification accuracy decreases by about 7 percent at the higher speeds. 

Independent of the sensor location, high classification accuracy was achieved across all the 
sensors. The indirect and direct approaches seem to be equally effective for damage detection 
when applying the proposed signal processing techniques. Of the two sensor locations 
considered in the indirect approach, the wheel level and the suspension level, the sensors at the 
wheel level performed better than the sensors at the suspension level. 

Given the simplicity of the model considered, the results presented are strictly applicable 
only to the particular experimental setup and cannot be generalized for full-scale structures at 
this time. On the other hand, we observed a high degree of consistency in the classification 
accuracies across the very different types and severity of damage and for different vehicle 
speeds. This gives us hope that our approach might be applicable to more general systems. In the 
next task we attempt tp validate the robustness of these results for more realistic systems and 
conditions. These scenarios include different roadway roughness profiles, atmospheric 
conditions and other bridge interaction variables such as different vehicle/bridge mass ratios, the 
effect of ongoing traffic and torsional effects on the bridge by non-symmetric loading from the 
vehicle path. 
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Task 2:  Effect of temperature and boundary condition on the indirect health 
monitoring of a bridge model 

Introduction 

The indirect approach to the health monitoring of bridge structures uses a smaller number 
of sensors, mounted on moving vehicles that travel across the bridge of interest, to collect data 
that may help in identifying structural damage and thus serve as an indicator for more detailed 
analysis.  

In the previous task we presented the initial results of a study that proposes to employ 
fleets of vehicles to routinely acquire and send data about the bridges over which they travel. A 
laboratory-scaled (i.e., 8 ft. (2438 mm) long) bridge model was subjected to different vehicle 
speeds, damage scenarios, and structural boundary conditions. In addition to the indirect 
measurement of the bridge motion obtained through the vehicle vibration, sensors were installed 
on the bridge to compare the effectiveness of the proposed indirect approach to a conventional 
direct SHM paradigm. The indirect and direct approaches seem to be at least equally effective for 
damage detection when applying the proposed signal processing techniques. The average 
damage detection accuracy obtained was over 90% for three different types of damage scenarios 
and four different severities of damage. Of the two sensor locations considered in the indirect 
approach, the wheel level and the suspension level, the sensors at the wheel level performed 
better than the sensors at the suspension level. In both cases, the indirect sensors outperformed 
the direct sensors. However, the previous results were constrained to one vehicle and one bridge. 

This task (2) builds upon work in the previous task (1) and presents a study where the 
effect of three instrumented moving vehicles was evaluated on two Bridges; the effect of 
temperature; and simulated road roughness were also considered. With respect to the previous 
work in the area of indirect bridge health monitoring, this presents four new evaluations of the 
effectiveness of this indirect SHM approach: 1) the effect of temperature and roughness on the 
accuracy of the damage classification; 2) the generality of the approach when three different 
vehicles instead of one are used to collect data; 3) the generality of the approach when two 
slightly different bridge models are tested; and 4) how well classification of damage scenarios 
can be performed for different locations and severities. 

Although the environmental and operating conditions have been addressed in the 
literature for direct SHM approaches (Farrar et al. 1998; Peeters and Roeck 2001; Cornwell et al. 
1999; Sohn 2007; Meruane and Heylen 2011; Yan et al. 2005a-2005b, Deraemaeker et al. 2008, 
Serker Kamrujjaman et al 2010, Zhu and Rizzo 2011), this project presents new insights 
concerning the effect of certain environmental conditions on the indirect SHM approach using 
vehicle accelerations.  

This task is organized into 4 sections, with the first being the introduction. The second 
section presents a description of the experimental setup and protocol used for the experiments 
described in this paper. The third section presents the experimental results in four subsections: a 
discussion of the effects of vehicle and bridge variations; a discussion of the effects of roadway 
roughness; a discussion of the effect of varying the location of damage and the effects of 
temperature gradients. The fourth section presents a brief discussion. 
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Experimental setup and protocol 

The indirect SHM proposed in this study was tested on two bridge models. A picture of the 
bridge setup, hereafter designated as B1, is presented in Figure 16a. A picture of the vehicle is 
presented in Figure 16b. Details and technical drawings of the experimental setup were presented 
in Section 3.2 and shown in Figure 13. The model consisted of three segments of 8ft. (2438 mm) 
long each: an acceleration ramp made of 2 in. x 1 in. x 1/8 in. (50.8 mm. x 25.4 mm. x 3.175 
mm.) 6063-T52 Aluminum Arch. Channel section, a bridge deck consisting of a simply 
supported aluminum plate with angle sections as girders as previously shown in Figure 13c, and 
a deceleration ramp identical to the first segment. The deck was a 8 ft.x 2 ft. (2438 x 610 mm) 
aluminum plate with thickness equal to 1/8 in. (3.175 mm). The second bridge herein indicated 
as B2, differed from B1 by having smaller (3.175 mm instead of 6.35 mm) angle sections as 
longitudinal girders. 

 

Figure 16: Experimental setup. a) General angle photo of experimental setup, b) Vehicle picture.  W.A.V. is the wheel 
level on the A axle, and S.A.V is the suspension level on the A axle. W.B.V. and S.B.V. are the corresponding wheel and 

suspension levels on the B axle. 
 
To create three different vehicles for testing the generality of our concept for different 

vehicles, three different masses were placed at the midspan of the bar connecting the front and 
rear axle of the vehicle. As such three vehicles with different dynamic properties were able to be 
used in testing the indirect SHM approach. The fundamental frequencies of the three vehicles are 
summarized in Table 3. 

Table 3: Vehicle properties. 
 V1 V2 V3 

Vehicle weight [kg] 4.8 5.2 5.7 
A.V axle frequency[Hz] 5.0 4.6 4.5 
B.V axle frequency [Hz] 5.3 4.8 4.7 

 
In this study, the effect of damage scenarios, temperature variation, and surface 

roughness on the response of the sensors was evaluated. To simulate different damage scenarios, 
the following boundary conditions were varied: (a) rotational restraints, (b) damping and (c) 
mass. Rotational restraints were added to the bridge at the each of the four supports of the bridge 
girders as detailed in Figure 17a. Six dash-pot dampers (Figure 17b) were progressively 
connected to the deck to change the bridge damping characteristics. An additional mass (from 
50g up to 300g) was positioned at different locations on the deck in order to simulate a change in 

(b) (a) 
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the natural frequencies and mode shapes of the structure. Two roughness conditions, hereafter 
indicated as R1 and R2, were simulated when testing the indirect SHM approach for classifying 
each of the damage scenarios. R1 represents the case of accidental imperfections of nominally 
smooth guide rail over which the vehicle travels. R2 represents the case of a built-in roughness 
profile for a particular bridge. R2 was achieved by modifying the rail that guides the moving 
vehicle with an angle section that had been randomly filed down to generate a roughness profile 
as shown in Figure 17c. The roughness profile measured for B1R2 and B2R2 is shown in Figure 
17d, where track 1 is the right rail on the A-B motion direction and track 2 the left rail on the A-
B motion direction.  Finally, six electric heat sheets were attached underneath the deck in order 
to model the effect of changes in temperature. The heat sheets location is shown in Figure 17e. A 
circuit was built to discretely turn on and off the heat sheets and produce different temperature 
distribution. An infrared camera was used to record and report the bridge temperature scenarios. 

  

 
Figure 17: Introduced modifications to the bridge structure. (a) Rotational restraints (b) Additional damping and (c) 
Roadway roughness profile built on top of guide rail (d) Measured additional roughness (e) Scheme for Heat Sheet 

locations. A and B are reference points for the forward travelling direction. 
 
Three sets of experiments were conducted. In the first set, 13 different boundary 

conditions were created and the three vehicles were used to monitor both bridges B1 and B2. 
Table summarizes the location of the rotational restraints (scenarios SC020BiR1-SC050 BiR1), 
dashpots (SC060 BiR1-SC090 BiR1), and masses (SC100BiR1-SC130BiR1), where i=1 for 
Bridge 1 and i=2 for Bridge 2. The table also presents the corresponding fundamental frequency 
(f [Hz]) and % critical damping (% ʓ crit) for both bridges. We used conventional free vibration 
testing to determine these dynamic parameters. The variation with respect to the baseline 
condition (SC010BiR1, the undamaged scenario) is presented as well in terms of %f shift and % 
ʓ crit shift in Table 4. These dynamic parameters in Table 4 are shown to illustrate the magnitude 
of the change imposed to the bridge structure for the different damage scenarios. Then, 
classification analysis was performed with data collected from vehicle-bridge interaction 
experiments. Each of the three vehicles crossed the bridge at 8 different speeds ranging from 1 to 
2.75m/s at 0.25 m/s increments. To assess repeatability, 32 iterations were performed for each 
combination of vehicle, damage scenario and vehicle speed. Data was recorded when the vehicle 
was moving in both the forward (A-B) direction and backward (B-A) direction. As such, a total 
of 13 (scenarios) x 2 (bridges) x 3 (vehicles) x 8 (speeds) x 32 (iterations) x 2 (motion directions) 
= 39936 individual experiments were conducted. However, in this paper only the forward motion 
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is considered from this point forward, which means that 19968 experiments composed the first 
set of interaction experiment data set. 

 
Table 4: Damage scenarios: types and severity. 

  B1 R1   B2 R1 
Schematics SC f 

[Hz] 
% f 
shift 

%ʓcrit % ʓ crit 
shift 

 SC f 
[Hz] 

% f 
shift 

%ʓcrit % ʓ crit 
shift 

 010B1R1 7.23 0.00 3.63 0.0  010B2R1 5.75 0.000 7.70 0.00 

 020B1R1 7.46 3.17 6.34 74.9  020B2R1 6.07 5.56 8.59 11.6 

 030B1R1 7.66 6.00 6.45 77.8  030B2R1 6.36 10.5 11.3 46.0 

 040B1R1 8.11 12.2 7.97 120  040B2R1 6.72 16.8 13.9 79.9 

 050B1R1 8.56 18.4 9.37 158  050B2R1 7.11 23.7 14.4 86.7 

 060B1R1 7.24 0.17 8.52 135  060B2R1 5.80 0.87 14.3 86.3 

 070B1R1 7.25 0.28 11.3 212  070B2R1 5.81 1.04 15.8 105 

 080B1R1 7.28 0.73 26.4 629  080B2R1 5.96 3.66 30.2 293 

 090B1R1 7.30 0.98 31.4 767  090B2R1 5.94 3.22 46.7 507 

 100B1R1 7.19 -0.56 4.44 22.5  100B2R1 5.73 -0.43 6.97 -9.52 

 110B1R1 7.18 -0.66 4.34 19.5  110B2R1 5.71 -0.72 6.60 -14.2 

 120B1R1 7.14 -1.29 4.07 12.3  120B2R1 5.69 -1.02 6.42 -16.6 

 130B1R1 7.09 -1.85 4.37 20.5  130B2R1 5.66 -1.60 6.41 -16.8 
 
In the second set of experiments, the effect of roughness and location of damage was 

studied. The roughness condition R2 was compared to the smooth rail condition R1 for some 
scenarios and after only the roughness condition is used as it is a more realistic condition.   
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Table 5 summarizes the configurations and dynamic characteristics of both bridges under 
roughness scenarios R2. The scenarios in   
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Table 5 allowed comparing the effect of roughness on scenarios SC020BiR2, 
SC030BiR2, SC070BiR2, SC080BiR2, SC110BiR2 and SC120BiR2, with their corresponding 
SC020BiR1, SC030BiR1, SC070BiR1, SC080BiR1, SC110BiR1 and SC120BiR1, where i=1 for 
Bridge 1 and i=2 for Bridge 2. 
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Table 5: Damage scenarios: locations and roadway roughness 
  B1 R2   B2 R2 

Schematics SC f [Hz] % f 
shift 

%ʓcrit % ʓ crit 
shift 

 SC f [Hz] % f 
shift 

%ʓcrit % ʓ crit 
shift 

 010B1R2 7.77 0.00 13.04 0.00  010B2R2 5.80 0.00 5.81 0.00 

 020B1R2 7.86 1.06 15.63 0.20  020B2R2 5.95 2.62 9.85 0.69 

 021B1R2 7.87 1.30 19.64 0.51  021B2R2 5.95 6.10 8.53 0.47 

 022B1R2 8.00 2.99 13.46 -0.03  022B2R2 6.15 6.90 13.55 1.33 

 023B1R2 8.17 5.20 24.85 0.91  023B2R2 6.20 12.07 9.23 0.59 

 030B1R2 8.10 4.27 16.17 -0.24  030B2R2 6.50 13.79 8.46 0.46 

 031B1R2 8.30 4.27 21.05 0.61  031B2R2 6.60 8.62 11.61 1.00 

 032B1R2 8.40 8.14 19.53 -0.5  032B2R2 6.30 6.90 9.32 0.60 

 033B1R2 8.10 6.85 9.98 -0.23  033B2R2 6.20 -0.86 13.14 1.26 

 070B1R2 7.77 0.00 18.93 0.45  070B2R2 5.75 -0.86 19.00 2.27 

 071B1R2 7.77 0.00 27.06 1.08  071B2R2 5.75 -0.86 33.13 4.70 

 072B1R2 7.77 0.00 18.54 -0.42  072B2R2 5.75 -0.86 18.82 2.24 

 073B1R2 7.77 0.00 23.40 0.79  073B2R2 5.75 -0.86 23.42 3.03 

 080B1R2 7.67 -1.30 34.52 1.65  080B2R2 5.75 -0.86 40.47 5.97 

 081B1R2 7.67 -1.30 33.80 1.59  081B2R2 5.75 -0.86 37.91 5.52 

 082B1R2 7.67 -1.30 35.51 1.72  082B2R2 5.75 -0.86 39.85 5.86 

 083B1R2 7.70 -0.88 37.03 1.84  083B2R2 5.75 -0.86 40.36 5.95 

 110B1R2 7.67 -1.30 11.82 -0.09  110B2R2 5.65 -2.59 10.16 0.75 

 111B1R2 7.67 -1.30 12.28 -0.06  111B2R2 5.65 -2.59 10.87 0.87 

 
112B1R2 7.67 -1.30 11.70 -0.10  112B2R2 5.65 -2.59 9.64 0.66 

 113B1R2 7.67 -1.30 13.81 0.06  113B2R2 5.65 -2.59 8.99 0.55 

 120B1R2 7.60 -2.16 11.25 -0.14  120B2R2 5.60 -3.45 9.04 0.56 

 121B1R2 7.70 -0.88 12.55 -0.04  121B2R2 5.65 -2.59 9.41 0.62 

 122B1R2 7.77 0.00 12.62 -0.03  122B2R2 5.65 -2.59 8.86 0.52 

 123B1R2 7.60 -2.16 11.28 -0.14  123B2R2 5.60 -3.45 8.17 0.41 

 
To conduct experiments related to the effect of damage location, four cases for each 

damage scenario were conducted. For example, in the damage scenario where a single rotational 
restraint is applied (SC020BiR2), it is applied at four different locations; for these four locations, 
the labels SC020BiR2, SC021BiR2, SC022BiR2 and SC023BiR2 were used. The same was done 
for scenarios SC030 BiR2, SC070 BiR2, SC080 BiR2, SC110 BiR2 and SC120 BiR2 with 
corresponding scenarios where the location of damage was changed. Vehicle 1 (V1 from Table 
3), operated at four speeds ranging from 1.5 to 2.25m/s in 0.25 m/s increments in the second 
experiment set. As such, 25 (scenarios) x 2 (bridges) x 1(vehicle) x 4 (speeds) x 32 (iterations) = 
6400 experiments composed the second set of experiments.  
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In the third set of experiments, the effect of a temperature gradient on the bridge was 
investigated. The bridge B1 with roughness R2 was subjected to eleven different temperature 
patterns, as summarized in the leftmost column of Table 6. For illustrative purposes, Figure 18 
shows one of these patterns. In order to make the infrared measurements accurate, the surface of 
the deck was painted using a standard gray paint. For each pattern four different damage 
scenarios were devised. One is the pristine condition and the other three represent one of each of 
the three damage types. Vehicle V1 was used at speeds ranging from 1.5 to 2.25m/s at 0.25 m/s 
increments. A total of 11 (temperature gradients) x 4 (bridge scenarios) x 4 (speeds) x 1 (vehicle) 
x 1 (bridge) x 32 (iterations) = 5632 experiments composed the third set of experiments. 

 
Figure 18: Bridge longitudinal view; normal and Infrared images. 

 
 The different scenarios described in this section were processed for feature extraction and 
classified using the same methodology as described in Task 1. The Following describes the 
classification experiments performed results obtained. 
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Table 6: Damage scenarios: temperature B1 R2 
Infrared 
Images Schematics SC f [Hz] % f shift 

wrt T00  
% f shift 

wrt SC010 ƺ %ʓcrit wrt 
T00 

%ƺcrit 
wrt SC010 

 

 010B1R2 7.26 0.00 0.00 9.30 0.00 0.00 

 020B1R2 7.40 0.00 1.92 6.32 0.00 -32.06 

 070B1R2 7.16 0.00 -1.39 13.45 0.00 44.67 

 110B1R2 7.16 0.00 -1.39 5.78 0.00 -37.85 

 

 010B1R2 7.63 4.98 0.00 13.06 40.48 0.00 

 020B1R2 7.71 4.08 1.05 12.15 92.35 -6.98 

 070B1R2 7.68 7.28 0.77 14.43 7.32 10.52 

 110B1R2 7.61 6.22 -0.22 9.03 56.27 -30.86 

 

 010B1R2 7.46 2.66 0.00 14.49 55.90 0.00 

 020B1R2 7.55 2.04 1.30 12.33 95.28 -14.90 

 070B1R2 7.47 4.23 0.11 17.75 31.98 22.47 

 110B1R2 7.44 3.87 - 0.23 12.87 122.72 -11.21 

  010B1R2 7.59 4.51 0.00 9.54 2.66 0.00 

 020B1R2 7.91 6.79 4.14 14.79 134.25 55.02 

 070B1R2 7.67 7.04 1.00 17.17 27.67 79.92 

 110B1R2 7.59 5.99 0.00 11.77 103.65 23.29 

  010B1R2 7.32 0.81 0.00 15.58 67.60 0.00 

 020B1R2 7.50 1.35 2.46 19.0 200.86 21.95 

 070B1R2 7.47 4.23 1.95 16.63 23.63 6.72 

 110B1R2 7.38 3.05 0.80 12.39 114.49 -20.46 

  010B1R2 7.52 3.47 0.00 15.58 68.71 0.00 

 020B1R2 7.60 2.72 1.17 11.45 81.25 -27.01 

 070B1R2 7.57 5.63 0.67 16.26 20.91 3.68 

 110B1R2 7.53 5.16 0.22 10.01 73.33 -36.15 

 
 

 010B1R2 7.67 5.56 0.00 13.35 43.60 0.00 

 020B1R2 7.66 3.40 -0.16 13.46 113.15 0.84 

 070B1R2 7.47 4.23 -2.63 22.23 65.33 66.57 

 110B1R2 7.42 3.52 -3.29 17.0 194.25 27.35 

 

 010B1R2 7.71 6.13 0.00 12.84 38.10 0.00 

 020B1R2 7.86 6.12 1.90 10.2 61.55 -20.53 

 070B1R2 7.67 7.04 -0.55 16.19 20.41 26.14 

 110B1R2 7.67 7.04 -0.55 11.11 92.28 -13.47 

 

 010B1R2 7.39 1.74 0.00 10.98 18.10 0.00 

 020B1R2 7.66 3.40 3.59 11.35 79.78 3.41 

 070B1R2 7.47 4.23 1.02 16.57 23.24 50.96 

 110B1R2 7.46 4.11 0.91 11.34 96.35 3.33 

 

 010B1R2 7.53 3.70 0.00 10.65 14.54 0.00 

 020B1R2 7.66 3.40 1.62 10.51 66.50 -1.25 

 070B1R2 7.48 4.46 -0.67 15.40 14.48 44.59 

 110B1R2 7.48 4.46 -0.67 12.87 122.75 20.86 

 

 010B1R2 7.73 6.37 0.00 9.80 5.44 0.00 

 020B1R2 7.91 6.79 2.33 10.0 58.31 2.00 

 070B1R2 7.73 7.98 0.11 17.16 27.57 75.04 

 110B1R2 7.67 7.04 -0.76 11.39 97.17 16.22 
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Classification Experiments and Results 

Effect on Classification Accuracy of Variations of Vehicles, Bridges, Vehicle Speeds 
and Severity of Change 

The signal processing described in Task 1 was used for damage detection and severity 
identification. The damage detection is a two class experiment (i.e., damaged or undamaged) 
while the severity classification in this task (Task 2) is a four class experiment (i.e., 020BiR1-
050BiR1).  

 
Damage detection. The first class in this two label experiment, undamaged, is associated with 
pristine condition represented by any scenario labeled as SC010BiR1 in Table  4. Scenarios 
labeled SC020BiR1-SC0130BiR1 were associated with the second class, damaged. We thus 
obtained, 7 (sensors) x 12 (scenarios) x 8 (speeds) x 3 (Vehicles) x 2 (Bridges) = 4032 separate 
assessments of classification accuracy. The classification accuracy is the proportion of true 
estimated results (both true positives and true negatives) in the population and is a very good 
indicator of the effectiveness of correctly classifying new incoming data. The results are 
presented for each bridge separately in Figure 19 - Figure 22. 

Figure 19 show the results associated with Bridge 1. Three separate bars are used to 
associate the sensors to their respective location (Bridge, Wheel or Suspension). The separation 
of the results by location of bridge sensor allows for a comparison between the direct and 
indirect approach. The vertical bars represent the standard deviation associated with of the 
averaged results of 288 experiments for the bridge sensors 3 (sensors) x 12 (scenarios) x 8 
(speeds) = 288 (detection experiments), and 192 detection experiments for the wheel and 
suspension sensors 2 (sensors) x 12 (scenarios) x 8 (speeds) = 192 detection experiments). At the 
top of each bar the standard deviation is shown. The average accuracy obtained for all the 
sensors is shown with a black line behind the bar graphs with numeric value of average included. 
Figure 19a shows the classification accuracy relative to the rotational restraints as determined 
using each of the three vehicles. In the framework of the binary classification performed here, an 
accuracy of 50% represents the probability of randomly assigning a label to one of the two 
classes. Overall the performance of the sensors mounted on the wheel is comparable to the direct 
monitoring, and superior to the accelerometers mounted on the suspensions. There is not a 
significant difference between Vehicle 1 and Vehicle 3 in Figure 19a. Similarly Figure 19b and 
6c show the results associated with the damping and the mass increases, respectively. In Figure 
19b and 19c there is a 5% to 6% decrease in accuracy between Vehicle 1 and Vehicles 2 and 3. 
The rotational restraints scenarios are less sensitive to vehicle changes than the damping increase 
or the mass increase scenarios. The consistent results of the rotational restraint can be attributed 
to % change in the natural frequency of the rotational restraint scenarios being more significant 
than the damping or mass increase scenarios (see Table 5). The fundamental frequency of the 
rotational restraint scenarios vary up to 18% for Bridge 1 and 23.7% for Bridge 2 while the mass 
and damping increase scenarios vary less than 4%. Figure 19a - c suggest that: 1) the increase of 
the vehicle mass has a detrimental impact on the classification accuracy that is more significant 
for slight changes in the bridge; and 2) the sensors at the wheel level outperform all other 
sensors.  
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Figure 19: Bridge 1: (a-c) Damage detection accuracy for different vehicles averaged across different speeds and severity 
scenarios of the same damage type: (a) Rotational Restraint; (b) Damping Increase and (c) Mass Increase. (d-f) Damage 
detection accuracy for different speeds averaged across the different damage scenarios of the same vehicle: (d) Vehicle 1; 

(e) Vehicle 2 and (f) Vehicle 3. 
 

The effect of the vehicle speed on the classification accuracy is shown in Figure 19d-f. 
An average of the first four speeds and the last four for all the sensors is depicted with a black 
line behind the bar graphs with an associated numeric value. Figure 19a shows a decrease among 
the first four and the last four speeds. The other two vehicles, Figure 19b and c are more stable 
with respect to speed variation. 

Similar to Figure 19, Figure 20 reports on the results associated with Bridge 2. Figure 
20a-c shows a small change in the average classification results for the different vehicles and 
better classification accuracy with respect to the results for Bridge 1. Figure 20a shows an 
average 96% classification accuracy for the Rotational Restraints scenarios. Figure 20b shows an 
average 93% classification accuracy for the Damping increase scenarios. Figure 20c shows an 
average 90% classification accuracy for Mass Increase scenarios. Figure 20d-f shows the 
classification accuracy across the different speeds for Bridge 2. Figure 20d-f shows a steadier 
trend across the different speeds for all the vehicles for Bridge 2 when compared to Bridge 1 in 
Figure 19d-f. The overall average classification accuracy for the three vehicles and different 
speeds is about 93% for Bridge 2.  
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Figure 20: Bridge 2: (a-c) Damage detection accuracy for different vehicles averaged across different speeds and severity 
scenario of the same type: (a) Rotational Restraint; (b) Damping Increase; and (c) Mass Increase. (d-f) Damage detection 
accuracy for different speeds averaged across the different damage scenarios: (a) Vehicle 1; (b) Vehicle 2; and (c) Vehicle 

3. 
 
Severity classification.  The severity classification experiments were defined as four label 
classification experiments for each damage type: Rotational Restraints, Damping Increase and 
Mass Increase.  SC020BiR1, SC030BiR1, SC040BiR1 and SC050BiR1 are the four scenarios for 
the Rotational Restraint damage type as shown in Table 2. The four Damping Increase severity 
levels were defined by the scenarios: SC060BiR1, SC070BiR1, SC080BiR1 and SC090BiR1.  
Finally, the four mass Increase severity levels were defined by the four scenarios: SC100BiR1, 
SC110BiR1, SC120BiR1 and SC130BiR1. Each of the severity classification experiments 
considered was run with the corresponding data of the 4 labels, from a particular sensor and for a 
particular damage type (one of three), vehicle (one of three), vehicle speed (one of eight) and 
bridge (one of two). We ran, therefore, 1008 total classification experiments 7 (sensors) x 3 
(damage types) x 8 (speeds) x 3 (vehicles) x 2 (bridges) = 1008). Just as in the case of the 
damage detection experiments, the results are shown for each bridge separately. Results for 
Bridge 1 are shown in Figure 21 and for Bridge 2 in Figure 22. The three sensor locations 
(Bridge, Wheel and Suspension) were represented by separate bars in the bar graphs. In Figure 
21, the baseline for this case was set at 25%, which is the probability of randomly assigning a 
label among the four labels, P=1/4.  

Figure 21a-c show the average classification accuracy results for Bridge 1 for each of the 
three damage types for each of the three different vehicles used (similar to Figure 19a-c and 
Figure 20a-c). Consistent trends as the ones observed in the two-label detection experiments can 
be seen in the four-label severity classification experiments. The Rotational Restraint scenarios 
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are on average higher in classification accuracy than the other two damage types because of a 
more significant shift in the natural frequency of the bridge cause by rotational restraint. 
The classification results for the four-label experiments across the different speeds for Bridge 1 
are shown in Figure 21d-f. A significant decrease in the average classification accuracy for 
Bridge 1 occurs for the last four speeds in comparison to the first four speeds for vehicle 1. The 
classification accuracies for the other two vehicles are less sensitive to a change in speed.  

Figure 21 Bridge 1: (a-c) Damage severity classification accuracy for different vehicles averaged across different speeds 
and severity scenario of the same damage type: (a) Rotational Restraint; (b) Damping Increase; and (c) Mass Increase. (d-
f) Damage severity classification accuracy for different speeds averaged across the different damage scenarios of the same 

vehicle: (d) Vehicle 1; (e) Vehicle 2; and (f) Vehicle 3. 

 

Similarly, Figure 22 presents the classification accuracies for Bridge 2 in the same 
manner that Figure 21 does for Bridge 1. Figure 22a-c shows better classification accuracy with 
respect to the results for Bridge 1 shown in Figure 21a-c. An 80% classification accuracy was 
obtained for the Rotational Restraints scenarios as shown in Figure 22a, a 73% classification 
accuracy for the Damping increase scenarios is shown in  Figure 22b, and a 67% classification 
accuracy for Mass Increase scenarios is shown in  Figure 22c. 

Figure 22d-f show the classification accuracy for damage types on Bridge 2 for different 
vehicle speeds. It shows a steadier trend across the different speeds for all the vehicles for the 
damage scenarios on Bridge 2 when compared to Bridge 1 in Figure 21d-f. The overall average 
classification accuracy for the three vehicles and different speeds is about 73% for Bridge 2.  
Overall the classification results obtained for Bridge 2 were higher than those for Bridge 1 and 
more stable with respect to the different speeds. 
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Figure 22: Bridge 2: (a-c) Damage severity classification accuracy for different vehicles averaged across different speeds 

and severity scenario of the same damage type: (a) Rotational Restraint; (b) Damping Increase; and (c) Mass Increase. (d-
f) Damage severity classification accuracy for different speeds averaged across the different damage scenarios of the same 

vehicle: (d) Vehicle 1; (e) Vehicle 2; and (f) Vehicle 3. 
 

The classification results obtained were further inspected by creating cluster plots of the 
four Rotational Restraint scenarios: SC020B1R1, SC030B1R1, SC040B1R1 and SC050B1R1. 
Figure 23 shows the cluster plot generated using the first three frequency features for the samples 
defined for Bridge 1, Vehicle 1, Speed 1 and without additional built-in roughness. The most 
significant frequencies are used as features for the different scenarios as described in Section 
3.3.2. One can see that the high classification accuracy obtained for the rotational restraint 
scenarios can be well justified when looking at the cluster plots. The four different severity 
scenarios for the rotational restraints generated distinct clusters that can be distinguished by the 
naked eye.  

 
Figure 23: Rotational restraints scenarios cluster analysis. Vehicle 1, Bridge 1, Speed 1 m/s, R1 (Roughness from 

accidental imperfections). 
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Effect of Roughness and Damage Location 
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Tables 4 and 5 showed the second set of scenarios run for determining the effects of 
roadway roughness on classification accuracy. For this set of experiments, both bridges were 
modified to include a roadway profile as described in Section 4.2. We compared the damage 
detection accuracy for two different roughness conditions, R1 and R2. 

 
Damage detection accuracy for different roughness. In a second set of experiments, we 
explored the accuracy of damage detection when a roadway roughness profile exists. The 
average classification accuracies obtained with and without roughness were plotted in Figure 24. 
Figure 24 a – d show the cases of the two rotational restraint scenarios Bridges 1 and 2. The 
caption and the scheme below in each plot in Figure 24 identifies the corresponding scenario of 
one or two rotational restraints. Similarly, schemes and captions identify the corresponding 
scenario for each plot in Figure 24.  Figure 24 e – h show the cases of the two damping increase 
scenarios in Bridges 1 and 2, and Figure 24i – l show the mass increase scenarios in Bridges 1 
and 2. Each graph in Figure 24 shows the average classification accuracy for Vehicle 1 and a 
specific Bridge (Bridge 1 in Figure 24a,b,e,f,I,j or Bridge 2 in Figure 24b,c,g,h,k,l), using four 
different vehicle speeds (1.5, 1.75, 2 and 2.25m/s), the different sensor location and the two 
different roughness profiles (that of the purchased angle referred to as R1 and that of the 
manufactured roughness referred to as R2, both were discussed in Section 4.2). The baseline was 
set to 50% and each bar represents the average results obtained for a particular sensor location as 
in the previous damage detection graphs.  
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Rotational Restraints scenarios, 1 and 2 Rotational Restraints, Bridge 1 and 2. 

 
        

 
Damping Increase scenarios, 2 and 4 Dampers, Bridge 1 and 2 

 
         

 
Mass Increase scenarios, 1 and 2 100g and 200g, Bridge 1 and 2 

 
           

Figure 24: Damage detection comparison among bridges with two different roughness profiles. (a-d) two Rotational 
Restraints scenarios: (a-b) Bridge 1 and(c-d) Bridge 2; (e-h) two Additional Damping scenarios: (e-f) Bridge 1 and (g-h) 

Bridge 2; (i-l) two Additional Mass scenarios: (i-j) Bridge 1 and (k-l) Bridge 2. 
 
 The comparison presented in Figure 24 shows an increase in the damage detection 
capability when the bridge had more significant roadway roughness (case R2). These results 
indicate that roadway roughness may actually contribute to more accurate classification for the 
indirect approach, which is admittedly counter to what one might have expected when adding 
this variable to the problem. Intuitively, however, we can possibly explain this increase in 
classification accuracy as a result of the roadway roughness increasing the vibration of the bridge 
allowing the vehicle to better capture the dynamic characteristics of the bridge structure. 
However, including the roadway roughness in the manner we did in this experiment (adding an 
additional portion of the rail) also increased the natural frequency of the undamaged bridge (See   
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Table 2), and the increase in classification accuracy also could be attributed to a different 
vehicle/bridge frequency ratio. More investigation is necessary on this issue, but the experiment 
does begin to dispel concerns that adding roadway roughness would make the classification 
accuracy worse. 

The Effect of Different Locations of Damage 

Using the second set of scenarios shown in   
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Table 4, we setup two types of classification experiments. The first was a set of damage 
detection experiments for the same amount of damage at different locations, and the second was 
a set of four label classification experiments where the location was made to be different 
between scenarios with the same amounts and type of damage. These two sets of classification 
experiments are further described in the following two sub-sections. 

 
Detection accuracy for damage at different locations. We explored the accuracy of damage 
detection for scenarios with the same amount of damage of a certain type at different locations 
on the bridge structure (see   
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Table 5). In these two-label experiments, we explore the dependence of the accuracy for 
detecting different types of damage on the location of that damage. As in previous sections, each 
of the detection experiments considered data from a particular sensor, different damage 
scenarios, a particular speed, a particular vehicle and a particular bridge. We obtained therefore 7 
(sensors) x 24 (damage scenarios) x 4 (speeds) x 1 (Vehicle) x 2 (Bridges) = 1344 separate 
assessments of classification accuracy. The corresponding average results shown in Figure 25 are 
grouped by scenarios of the same damage type and severity level but for different locations. For 
example, in Figure 25a, SC020 is the scenario of a single rotational restraint at a particular 
location and SC021, SC022 and SC023 are also single rotational restraints but at different 
locations as defined in   



50 
 

Table 5.   

 

  

 
Figure 25: Damage detection comparison among scenarios with different damage locations: Bridge 1 (a,b,e,f,i,j), Bridge 2 

(c,d,g,h,k,l). 
 
 Figure 25a shows the detection results for different locations of a single rotational 
restraint for Bridge 1, and Figure 25b shows the average detection results for two rotational 
restraints at different locations for Bridge 1. Among the scenarios shown in Figure 25b, SC030 
and SC031 have both rotational restraints on one side of Bridge 1. The other two scenarios in 
Figure 25b, SC032 and SC033 had two rotational restraints, one on each side of Bridge 1. 
Similarly, Figure 25c shows the same scenario for Bridge 2 as that shown for Bridge 1 in Figure 
25a.  In both bridges, the damage detection accuracy obtained was above 95%. These results 
suggest that for the damage scenarios modeled, they can be detected with a very high accuracy 
regardless the location of the applied damage. The same is true for the other scenarios plotted in 
Figure 25. 
 
Location classification. We also performed a four-label classification experiments on the data 
from the same set of experiments described in   
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Table 5. The four labels were defined as the four possible locations of damage of a particular 
damage type and severity applied to the bridge. In the caption of Figure 26, we named SC02- the 
four-label location classification experiment for classifying among the four scenarios in which a 
single Rotational Restraint is applied (SC020, SC021, SC022 and SC023 for Bridge 1 or 2 and 
Roughness 2).  Similarly, we used SC03-, SC07-, SC08-, SC11- and SC12- in Figure 26 for 
naming the four-label location classification experiments corresponding to scenarios that vary 
the locations of scenarios SC030, SC070, SC080, SC110 and SC120, respectively as defined in   
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Table 5. Each four-label location classification experiment was run for a specific sensor, scenario 
type and severity, speed and bridge. We ran therefore 7 (sensors) x 6 (scenario types and 
severity) x 4 (speeds) x 1 (vehicle) x 2 (bridges) = 336 four-label location classification 
experiments. As in previous figures, we plot the different bridge results separately; Figure 26a 
plots the results for Bridge 1 and Figure 26b plots the results for Bridge 2. The baseline of Figure 
26 was set at 25%, P=1/4 (P=direct probability). 
 In Figure 26a, the lowest classification accuracy obtained was 67% for SC08-, which 
suggests a small difference between the scenarios with four dampers. We can confirm this small 
variation by looking at   
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Table 5. SC080 through SC083 in   
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Table 5 share the same two middle dampers and show small variation in the fundamental 
frequencies. They would be therefore hard to classify by using the simple frequency-based 
features that we have used in this study. SC11- and SC12-, which group the location variation for 
a 100g and a 200g increase as defined in   
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Table 5, also show small or no variation of the natural frequency. However, even for this 
challenging case an average classification of over 70% was achieved. In Figure 26b, 
corresponding to Bridge 2, the lowest classification accuracies obtained were for scenarios 
SC08- and SC11- (four dampers and a 100g increase at different locations accordingly) there the 
classification accuracies for both scenarios was over 60%.  

 
Figure 26: Location classification comparison among scenarios with different damage location: (a) Bridge 1, (b) Bridge 2. 

Effect of Temperature gradient scenarios. 

We now consider the third data set obtained when the thermal conditions were varied, 
which was described in Table 6. We ran two different classification experiments using the same 
signal processing and classifications approach as presented in Section 3.3. The first classification 
experiment was a damage detection experiment assuming the temperature scenario to be known, 
and the second classification experiment was a damage detection experiment assuming the 
temperature scenarios to be unknown. In this second classification experiment, the data from the 
11 different temperature gradients for a particular bridge damage scenario is used to define a 
label. The next two subsections describe the obtained results.  

 
Damage detection within same temperature scenario. As shown in Table 6, four different 
bridge scenarios: SC010B1R2 (Undamaged), SC020B1R2, SC070B1R2 and SC110B1R2, were 
run under each specific temperature gradient scenario. We preformed damage detection 
experiments (two labels: Undamaged vs Damaged) for each of the three damage scenarios: 
SC020B1R2, SC070B1R2 and SC110B1R2 at a particular temperature scenario. In other words, 
each damage scenario is defined by the corresponding experimental iterations that were 
conducted for the given temperature scenario that consist of 1 (temperature gradient scenario) x 
1( bridge damage scenario) x 1(speed) x 1 (vehicle)x 1 (bridge) x 32( runs) = 32 iterations to 
define a particular damage scenario. Figure 27 shows the average and standard deviation of the 
classification accuracy obtained for the damage detection experiment for each the three damage 
scenarios under a specific temperature gradient conditions.  That is the average of 3(damage 
scenarios) x 4 (speeds) = 12 classification accuracy experiments. In all these experiments 
Vehicle 1 was used and the speeds ranged from 1.5 to 2.25m/s at 0.25 m/s increments. The 
baseline of the graph was set to 50% as in all the previous two–label damage detection graphs. 
The obtained results show that the average classification accuracy might vary by as much as 15% 
for the different temperature scenarios (see the results for T02 and T03). This variation suggests 
that some temperature scenarios might be more favorable for damage detection than others. The 
results obtained from the bridge sensors and from the vehicle sensors achieved roughly the same 
classification accuracy.  
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Figure 27: Classification accuracy of damage scenarios for specific temperature gradient scenario. 
 
Damage detection without considering temperature information. The second classification 
experiment considered a particular bridge condition to define a particular bridge damaged label 
with all the temperature variations. That is, SC010 is now defined by the 32 runs at each of the 
11 different temperature conditions. The other three scenarios in Table 6: SC020, SC070 and 
SC110 are also defined for this condition. In this case we are treating the temperature condition 
as an embedded variable in the data. Figure 28 shows the average classification results obtained 
for the detection experiments. The overall results show an interesting average classification 
accuracy among the three damage scenarios. The average classification results decrease with 
respect to the previous experiments shown in Figure 27, where the temperature was considered a 
known variable. This decrease was expected as this is a more challenging experiment where the 
embedded variable can mask the damage changes made to the bridge structure. In general terms, 
it can be seen that the Wheel and Suspension sensors achieved classification accuracies similar to 
or better than those using the sensor located on the bridge structure. 
 

 
            

Figure 28: Classification accuracy of damage scenarios regardless temperature scenario for training and testing. 

Discussion 

In summary, we further validated an indirect bridge SHM approach for different 
temperatures based on vibration data collected from a vehicle as it traverses the bridge structure, 
and compared the results with the traditional direct monitoring approach that uses sensors placed 
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on the bridge structure. We built an automated laboratory scale experimental setup that allowed 
for data acquisition and accurate control of the speed of the vehicle, accurately known 
modifications to the bridge, and multiple repetitions. We used a simple feature extraction and 
classification approach to perform several classification experiments on the collected data. We 
explored the space of possible variations to the vehicle-bridge interaction system to test the 
robustness of the indirect monitoring approach versus the direct monitoring approach. The 
variations considered two different bridges, eight different vehicle speeds, three different masses 
of vehicle, two roughness scenarios, 11 different temperature gradients, and three different types 
of damage made to the bridge (rotational restraints, additional damping and an additional mass). 
The different types of damage were explored in terms of detecting the existence of the damage 
and also classifying among scenarios with different damage locations and different levels of 
damage severity.  

For the vehicle variation, the introduction of a higher mass to the vehicle chassis decreased 
the average classification accuracy for the mass increase and damping increase scenarios in 
Bridge 1 by about 6%, and showed no significant difference for Bridge 2. The detection 
classification results for the sensors located at the wheel level and at the suspension system of the 
moving vehicle (indirect monitoring) were comparable with the results obtained with sensors 
located on the bridge structure (direct monitoring). 

For the different vehicle speeds, the Bridge 1-Vehicle 1 combination showed a 6% decrease 
in the damage detection classification accuracy between speeds of 1.75 m/s and 2m/s; however, 
all other Bridge-Vehicle combinations showed low dependence on speed. The detection results 
obtained using the indirect and direct monitoring approaches were similar. The severity 
classification results show similar trends to the damage detection classification accuracy for 
Bridges 1 and 2, but about 20% lower than those for damage detection. The decrease is attributed 
to the increase of the number of labels from two labels in the detection experiments to four labels 
in the severity classification experiments.  

The inclusion of roadway roughness increased the detection rate for almost all the damage 
scenarios compared. The indirect and direct monitoring approaches showed comparable results 
for all cases.  

Different locations of the same magnitude of damage showed similar average damage 
detection classification accuracy for both bridge structures. The location classification accuracy, 
a four label classification task, showed variations from 85% to 67% for Bridge 1 and from 78% 
to 62% for Bridge 2. This variation can be attributed to the choice of scenarios implemented. 
Some scenarios were very similar to others they were being classified against. The indirect and 
direct monitoring approaches showed comparable results for all location classification cases.  

Two types of damage detection experiments were conducted regarding various temperature 
gradient conditions. The first damage detection experiment compared damage scenarios within 
the same temperature gradient conditions. The variation of the detection accuracy of about 15% 
suggests that there are temperature gradient conditions more favorable than others for detecting 
damage scenarios. The second damage detection experiments assumed that there was no 
information about the temperature gradients and treated it as an embedded variable in the data. 
The classification results for the three scenarios explored on this case showed remarkable 
consistency for the three scenarios explored of about 74%. Once again the sensors considered as 
indirect performed just as well as those sensors located on the bridge structure. 

The results showed in this section, match, in most cases, the intuition about the behavior of 
the vehicle-bridge interaction systems with the obtained trends in terms of the classification 
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accuracies. That is, scenarios that had a greater variation of the dynamic characteristics identified 
by free-vibration experiments had also higher detection accuracy.  

The signal processing methodology used in this work was based on frequency based features 
and a standard classification algorithm. The numerical classification results could be greatly 
improved by exploring other feature space representations and other classification algorithms.  

From this work, it is clear further research was needed to validate the indirect versus the 
direct approach for bridge SHM. The results presented thus far are constrained to the 
corresponding experimental setup. Task 4 in this report to will explore other systems and scales 
where indirect monitoring could be employed.  
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Task 3: Damage Localization, Quantification and Bridge Condition 
Uncertainty  

 
In this section we investigate questions which will be of great interest to agencies who own 

bridges. Assuming there is damage, they will want to know where the damaged has occurred and 
the severity of the damage. We conducted experiments to answer these questions. In particular 
our goal was to see how changes in the severity of the damage and location of the damage would 
change the dynamic response of the bridge so that we could create a general framework for 
looking at these changes. In these experiments we defined “damage” as the placement of an 
additional mass on the bridge which would change the frequencies of the bridge in a similar 
manner to the way that frequencies of the bridge might change as the stiffness of the bridge 
decreased. 

A full write-up of this work is presented in Lederman et al. 2014, which has been included in 
the Appendix.  

 
The second part of this task was to consider cases where the condition of the bridge is not 

known. Our approach to structural health monitoring is model free—we do not build a finite 
element model of the bridge because this can be expensive and inaccurate. Instead we have the 
algorithms learn about the nature of the bridge. For this learning process to occur the data must 
be “labeled”—for example, the bridge could be labeled as healthy and then the initial signals 
would become the baseline. Later changes in the bridge would then be compared to this baseline.  

However, in practice we will have to begin monitoring bridges at different stages in their life 
cycle. When the bridge inspectors give a condition assessment, signals collected during that time 
period can be labeled by their assessment. However this assessment might change, or worse, the 
inspectors could have misclassified the condition of the bridge. To accomplish this task we 
looked at a different approach for selecting features and for classifying the data. A full write up 
of this work can be found in Chen et al 2013, which can be found in the Appendix.  However a 
brief overview of the work is given below.   

 

Data Analysis for SHM 
The goal of data analysis is to analyze patterns of various damage types and label each 
observation into a predefined class. In data analysis for SHM, we can detect presence or absence 
of damage, or go one step further and detect the severity, location and type of damage. These 
tasks are signal-processing problems known as classification. 

Classification System 
A classification system often has two core components, a feature extractor and a classifier. The 
feature extractor extracts numerical features from the data with the aim of discriminating classes 
based on those features. The task of the classifier is to label each observation into a predefined 
class based on those features. 

Progress 
So far, we have tried several different feature extractors and classifiers to (1) study the potential 
power of each algorithm, (2) find the suitable situations in which to use each algorithm, (3) study 
the difficulty of classification problem, and (4) upgrade our classification system to achieve 
better results.  
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Feature Extractor 
A feature extractor often includes two approaches: representation and discrimination. Generally 
speaking, representation approach is robust to noise and does not need training data, while the 
discrimination approach is sensitive to noise and needs training data, but often achieves better 
classification results. In bridge SHM project, data is noisy and we have access to few labeled 
samples (it is expensive to physically inspect the bridge and label it as damaged/undamaged, 
etc). Up to this point, we have used Fourier discriminant features, principal component analysis, 
sparse representations, and local Fisher discriminant analysis. We are constantly studying the 
effectiveness of various feature extractors for use in this project as well as how to combine the 
advantages of both representation and discrimination approaches.  
 
(1) Fourier discriminant features  

Fourier discriminant features choose the most discriminative frequencies as features. It 
consists of two steps: 1. the data is represented in a Fourier basis; 2. J-divergence is used as 
the discriminant measurement to evaluate the discriminative power of each frequency and 
then sort frequencies by their discriminative power. Step 1 provides representation by a fixed 
basis and Step 2 adaptively discriminates data. 

(2) Principal component analysis (PCA) (Abdi et al 2010.) 
PCA is a standard representation algorithm. It learns an orthogonal linear 
transformation from the given data that transforms the data into a new coordinate 
system such that the first coordinates captures the greatest variance, the second coordinate 
captures the second greatest variance, and so on. 

(3) Sparse representations (Wright 2009, Aharon 2006).  
Sparse representations represent signals with a linear combination of a small number of 
elementary signals called atoms that account for most or all information of a signal. Often, 
the atoms are chosen from a so called over-complete dictionary.  The aim of a sparse 
representation is often to reveal certain structures of a signal and to represent these structures 
in a compact and sparse representation. The representation dictionary is learned from data, so 
it is data adaptive. 

(4) Local Fisher discriminant analysis (LFDA) (Sugiyama 2007) 
LFDA is an advanced discrimination algorithm that improves on the popular linear 
discriminant analysis. It provides a linear supervised dimensionality reduction mechanism 
and is particularly useful when some classes consist of separate clusters. LFDA has an 
analytic form of the embedding matrix and the solution can be easily computed by solving a 
generalized eigenvalue problem. Compared to linear discriminant analysis, it considers local 
information and provides more than (c-1) nontrivial eigenfunctions, where c is the number of 
classes. 

Classifier 
We have used two types of classifiers. Supervised classifiers are trained on the labeled data and 
tested on unlabeled data. Semi-supervised classifiers are trained on both labeled and unlabeled 
data and tested on unlabeled and unseen data. We have used support vector machine (SVM) and 
graph-based semi-supervised learning. 
 
(1) Supervised learning (Bishop 2006)  

Supervised learning is the machine-learning task of inferring a function from labeled training 
data. Some popular supervised learning algorithms include naïve Bayes (Domingos 1997), 

http://en.wikipedia.org/wiki/Orthogonal_transformation
http://en.wikipedia.org/wiki/Linear_transformation
http://en.wikipedia.org/wiki/Linear_transformation
http://en.wikipedia.org/wiki/Coordinate_system
http://en.wikipedia.org/wiki/Coordinate_system
http://en.wikipedia.org/wiki/Machine_learning
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logistic regression (Hilbe 2009) and SVM (Burges 1997), which we used almost exclusively. 
When classifying, we want a classifier to learn the boundary between different classes and 
separate the feature space into different class spaces. Intuitively, a good separation is 
achieved by the hyperplane that has the largest distance to the nearest training data point of 
any class (so-called functional margin), since in general, the larger the margin the lower 
the generalization error of the classifier. SVM maximizes the margin and expresses it as a 
function of the weight vector and bias of the separating hyperplane. 

 
(2) Semi-supervised learning (Zhu 2005) 

Semi-supervised learning is a technique for training classifiers with both labeled and 
unlabeled data. It assumes that unlabeled data can provide distribution information to build a 
stronger classifier. Some popular semi-supervised learning algorithms include generative 
mixture models with expectation maximization, co-training, transductive SVM and graph-
based approaches. We focus on label propagation (Zhu 2002), which is one of graph-based 
approaches.  
Label propagation assumes that, while the measured samples exist in a high-dimensional 
space, they are distributed in a low-dimensional manifold. Based on this, a graph is 
constructed to analyze the distribution of both labeled and unlabeled samples. By analyzing 
how the labels propagate on this graph, classification can be achieved. 

Multiresolution Framework 
Multiresolution classification system (MRC) (Chebira 2007, Chebira 2008) is a generic 
classification framework. It decomposes images into localized space-frequency subbands using a 
wavelet packet tree (Coiffman 1991). In each subband, MRC extracts features, classifies them 
and gets a local classification result. A global weighting algorithm combines the local results to 
get a global decision. Its advantages are that (1) it extracts hidden features in localized time-
frequency zones; and (2) the traditional generic classification system is only the first subband of 
MRC. It reaches a decision using information from all the subbands. 

Summary 

Version Feature Extractor Classifier 

Cerda Thesis 2012 Top 5 Fourier 
discriminative features SVM 

ASCE Structures Conference 2013, Pittsburgh 
PA Sparse representations MSE 

Damage Assessment of Structures 2013, 
Dublin Ireland. LFDA SVM 

ASCE International Workshop on Computing 
in Civil Engineering 2013, Los Angeles CA Multiresolution + PCA SVM 

IEEE International Conference on Acoustics 
Speech Sound and Signal Processing 2013, 

Vancouver, CA 
Multiresolution + PCA SVM 

 

http://en.wikipedia.org/wiki/Generalization_error
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Comparison 
1. Fourier discriminative features vs. sparse representations vs. LFDA 

When the labeling ratio (the number of the labeled data/the number of all the data) is 
80%, we compare Fourier discriminative features with sparse representations and LFDA 
under 18 scenarios. 

 
Figure 29 - Comparison of three methods, Fourier Discriminant Features, Local Discriminant Features and Sparse 

Representation for 18 scenarios 
 

2. Fourier discriminative features vs. Multiresolution + PCA 
When the labeling ratio is 50%, we compare Fourier discriminative features with 
multiresolution classification 
 

 
Figure 30 - Comparison of Fourier Discriminant Features and Multiresolution Classification 

 
 

3. Supervised learning vs. semi-supervised learning under multiresolution framework 
We compare supervised learning with semi-supervised learning by changing the labeling 
ratio. SMRC stands for supervised multiresolution classification while SSMRC stands for 
semi-supervised MRC. 
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Figure 31 - Discriminant Accuracy at Various Labeling Ratios 

 

Conclusions 
Based on theoretical analysis and numerous experiments, we conclude the following: 

(1) Feature extractor: When the data is sufficiently labeled, LFDA has the best performance; 
when there are fewer labels, sparse representations are more effective.  

(2) Classifier: When the data is sufficiently labeled, SVM has the best performance; when 
there are fewer labels, a semi-supervised classifier is more effective as can be seen in 
Figure 31. 

As a framework, multiresolution classification system provides a consistently better 
performance than a generic classifier. 
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Task 4: Garage Experiments and Light Rail Data Collection 
 
In the first section we explain a set of experiments we conducted on a parking garage structure. 
We compare these results to those of the laboratory scale model.  
In the second part of this section, we show some initial results from recent data collection we 
have begun in collaboration with the Port Authority of Allegheny County. This project is still in 
its early phases. We have not yet collected sufficient data to give results. However we will 
specify what hardware we have installed, describe the database we have setup to manage the 
data, and show some of the raw data.  

Garage Field Experiments 
 
Our goal was to find a long span structure where we could conduct uninterrupted 

experiments, while minimizing the impact on other users. We ultimately selected the 3rd level of 
the East Campus Parking Garage at Carnegie Mellon’s Pittsburgh Campus. The lower levels of 
the garage fill first, so the 3rd floor was nearly empty during the early mornings when we 
conducted our experiments. Although there were relatively low levels of ambient vibration in the 
deck, we did occasionally observe some noise from cars on lower levels, and from heavy traffic 
on adjacent Forbes Avenue.  

 The deck is made of 32” x 8’6” (0.81m x 2.59m) precast prestressed concrete double tees 
with estimated 700lpf (1042 kg/m), each isolated from adjacent sections by an elastomer (Figure 
32, 33). Due to the elastomer, each double tee section acts as a simply supported beam. The span 
where we ran our experiments is 51.5ft (15.7m) long with an approximate weight of 36,120lbs 
(16,383kg).  

As our vehicle, we used an iRobot ATV-JR robot, with a weight of 50kg3, traveling at a 
constant speed of 2m/s. We fitted the robot with three Vibra-Metrics 5102 Piezoelectric 
Accelerometers, one on the front right of the vehicle, one on the rear left, and one on the rear 
right, as shown in Figure 34. The accelerometers on the robot were bolted down, a “direct” 
accelerometer was placed on the deck with a layer of surfing wax to help the accelerometer 
adhere to the surface. (This method of adhesion was found adequate to transfer the vibration 
through some free-vibration tests.) This accelerometer on the deck was placed at the midspan of 
the bridge and was the same model as that on the robot.  

Since this is an operational garage, we could not induce real damage in the structure; 
instead, we simulated a change in the structure by placing mass at the midspan of the precast T-
section. We used 5 gallon buckets filled with coarse aggregate which we weighed in a concrete 
laboratory prior to delivery to the garage. Because in the simulations we consider only a one 
dimensional beam, we were careful to apply the load symmetrically, so that the experiment 
would be similar to the simulations. As shown in Figure 32 and 33, an equal number of buckets 
are on each side.  We varied the total mass level on the bridge from 0 to 360 lbs (163kg) in 40lbs 
(18.1kg) increments for a total of 10 different mass levels. For the particular experiment that we 
will describe in this report, we ran 5 trials at each mass level. Then we recharged the robot, and 

                                                      
3
 This is the mass from the manufacturer’s website. We did not measure the mass of the particular robot, which 

would be slightly different due to some modifications.  
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ran another 5 trials at each mass level. After some data cleansing we had a total of 9 usable trials 
from each mass level, which are presented in the results.  

  
Figure 32 - Experimental Setup for Field Tests 

 

  
Figure 33 - Illustration Of Garage Experiments 
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(a) Front View    (b) Rear View 

Figure 34 - Detail of the Robot 
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Laboratory Experiments 
 

 Laboratory experiments were carried out on the scale model bridge to match the garage 
experiments. The ratio of added mass to the mass on the bridge deck was the same for both the 
garage experiment and the lab experiment. The purpose was to see if commonalities existed 
between the two scales (i.e. laboratory and garage deck) so that the work on the laboratory bridge 
could be applied more broadly. 

 

Data Selection 
 

In the laboratory experiments, extracting the signal when the car is on the bridge is 
relatively easy because of a bump as the vehicle enters the main span. Extracting the signal in the 
garage experiments was much more difficult. Data extraction is an important process to spatially 
align the data so that the computer can learn feature consistently.  

On the lab scale model, we selected the signal when the entire vehicle is on the bridge. 
The red portion of the signal shown in Figure 36 spans the time from when the back wheel enters 
the bridge, until the front wheel leaves the bridge. There is a noticeable spike as the front and 
back wheel leave the bridge due to a small gap between the track on the bridge, and the track on 
the deceleration ramp, as shown in Figure 35.  

 
Figure 35  – Slight Gap between Track and Bridge Allowing for Data Selection 
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Figure 36 - Data Selection Lab Data 

 
 In the garage experiment, the vehicle is constantly on the main span and there is no sudden 
bump we could use to spatially align the data. In this case our goal was to select data where the 
vehicle was traveling at a constant speed. Given that the garage span is 15.7 meters in total, we 
ensured that the robot was moving at a constant speed as it traveled over the middle 7.7 meters, 
and only extracted that data (there was a 4m area on both sides for accelerating and 
decelerating.)  

To facilitate data extraction we taped a broom handle to the garage deck in order that a 
peak would be recorded in the accelerometer signal (as shown in Figure 38). The broom handle 
is shown in Figure 37. The broom handle also allowed us to synchronize the data acquisition 
system on the garage deck with the system on the robot itself.  

 

 
Figure 37 - Detail of Broom Handle 
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Figure 38 - Garage Experiment Data Selection 
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Experimental Results 

 
Laboratory Data 
The laboratory data largely exhibits changes in the magnitude of various frequencies, as shown 
in the waterfall plot in Figures 39, 40 and 41. For each of these plots, the signals from the 30 
trials at each mass level were averaged, and then the magnitude of the discrete Fourier transform 
for each mass level was plotted.  

 
Figure 39 - Waterfall Plot, Data from Back Wheel, Laboratory Experiments (Severity Level 0 corresponds to no mass on 
the bridge, Level 1 correspond to 5g, up to Level 31 which corresponds to 150g) 
 

The predominant change between damage severity levels (or more precisely, between 
amounts of mass placed on the structure) is changes in the magnitude of the various frequency 
values. Although intuitively we might expect the frequencies to shift downward as more mass is 
added to the structure, we do not actually observe this phenomenon in the data.  
 It is worth noting that the sampling rate of the accelerometer is around 1600Hz, so it only 
captures information up to 800 Hz. There appears to be meaningful patterns at least above 400 
Hz. In fact sound recording of the vehicle crossing the bridge could also be used to classify the 
level of applied damage (albeit with slightly lower accuracy).  
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Figure 40 - Waterfall Plot, Data from Back Chassis, Laboratory Experiments (Severity Level 0 corresponds to no mass on 

the bridge, Level 1 corresponds to 5g… up to Level 31 which corresponds to 150g) 

 
Figure 41 - Waterfall Plot, Data from Bridge Sensor, Laboratory Experiments (Severity Level 0 corresponds to no mass 

on the bridge, Level 1 corresponds to 5g… up to Level 31 which corresponds to 150g) 
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Garage Data 
The signals from the robot have both a significant peak around 6Hz and a smaller peak 

around 400 Hz as can be seen in Figure 42. This high frequency component is particularly 
interesting because we do not see such high frequencies in the signal from the accelerometer on 
the bridge itself as seen in Figure 43. This 400Hz peak shifts downward around 3.4% as 
additional mass is placed on the deck, as can been seen in Figure 44. This 3.4% shift mimics the 
shift we see in the fundamental frequency of the bridge as seen in Figure 45, and the shift in the 
lower frequencies recorded by the robot as seen in Figure 46.  We suspect that the shift in this 
high frequency component must somehow reflect the additional mass (simulated damage) placed 
on the bridge, although it is difficult to demonstrate causality conclusively. Because we 
increased the mass on the bridge in succession (rather than placing random levels of mass) it is 
possible this shift has something to do with the robot, for example, the battery losing charge over 
time, and the motor vibrating at a different frequency. 

 
Figure 42 - Waterfall Plot, Signals from the Robot (Severity Level 0 corresponds to no mass on the bridge, Level 1 
corresponds to 40lbs… up to Level 10 which corresponds to 360lbs) 
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Figure 43 - Waterfall plot, signals from the bridge (Severity Level 0 corresponds to no mass on the bridge, Level 1 

corresponds to 40lbs… up to Level 10 which corresponds to 360lbs)

 
Figure 44 – Magnitude in the Frequency Domain, Each Progressive Level of Damage plotted 100 points above the 

previous. 
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Figure 45 - Magnitude in the frequency domain of the signal directly from the bridge, with each progressive level of mass 
plotted 100 points above the previous. Each signal was normalized and zero padded, providing a linear interpolation of 

the data in the frequency domain in order to see the shift more clearly.  
 

 
Figure 46 - Magnitude of the frequency domain from the robot, showing detail of the lower frequencies. This signal was 

also zero padded. A clear downward shift can be seen at many frequency levels. 
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Port Authority Project 
 

With the help of the University Transportation Center (T-SET), we have begun to collect 
indirect data from Pittsburgh’s Light Rail Line. This project has been facilitated through the 
connections of T-SET’s staff, and by the leadership of the Port Authority, in particular Bill 
Miller and David Kramer.  

Both the garage and the laboratory tests were simply experiments; they were an attempt 
to create the type of scenario we might encounter later on. The Pittsburgh Light Rail Line, 
known as “the T,” offers an opportunity to continuously collect real data in an operational 
environment. While previously we had simulated temperature changes and damage scenarios, 
this project tries to account for natural temperature change and detect genuine damage. The 
downside of such a system is that we lose control over the bridges. While in the lab we can 
choose when to simulate damage, in this data collection process we have to wait until a bridge is 
damaged or until construction occurs on one of the bridges. Our data collection efforts began in 
September 2013.  No work on this topic has been published. We will give a short summary of the 
work thus far and discuss the potential impact this project might have on the Structural Health 
Monitoring community. 

Our first task was to design robust hardware capable of efficiently logging high 
frequency data. In September 2013 we placed our data collection system on a single train of the 
Light Rail System. The data acquisition system consists of an LGX AG150-V automotive 
computer (Figure 47a), a GPS module (UsGlobalSat BU-353), and two National Instruments 
Dynamic Signal Acquisition Modules (Figure 47b). There are two types of accelerometers; a 
triaxial accelerometer (PCB 354C03) placed on the middle truck of the train and two uniaxial 
accelerometers (5102 Vibra-metrics) placed near the data acquisition system. A schematic of the 
whole system as implemented in the train car.  

 

 
(a)      (b) 

Figure 47 - Installed Equipment on the Train 
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Figure 48 -Schematic of the Sensors Placed on the light rail car 

 

  
 
(a)         (b) 

Figure 49 - (a) GPS data overlaid onto Google Maps (b)GPS plotted with bridge locations identified. When the train 
enters into a tunnel, the GPS accuracy deteriorates rapidly. This is why there are some straight lines veering away from 
the track. 

 
 
We collect accelerometer signals from the train continuously at 1651Hz. This generates 

lots of data—in the range of 10Gb per day. We store all this raw data, but then extract the portion 
of the signal when the train is actually on one of the 11 bridges, and place this data into a 
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database which is accessible via the internet. Details of the GPS output (overlaid onto Google 
Maps) and the portion of the signal we extract from the bridges are shown in figure 49.  

 
We look at the signal of the train both as it crosses the bridges and while it remains in the 

station. We expect to see lower accelerations while the train is stopped in the station. This serves 
as important verification that we are extracting the correct portion of the signals. This is shown 
in Figure 50.  

 

 
Figure 50 - This is an example of the raw signal collected from the train. Areas when the GPS shows the train to be in the 
station are shown in green. Areas where the GPS shows the train to be over a bridge are shown in red.  
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Figure 51 - Example Signals over a bridge at Different Temperatures 

 
In addition to the accelerometer signals, we record environmental data in our database. 

This includes temperature, humidity, visibility and wind speed. These values are extrapolated 
from NOAA weather data, and triangulated to provide a “hyperlocal” forecasts. At the moment 
we have limited crossing for each bridge so it is difficult to know which changes are due to 
stochastic changes and which are due to temperature changes. Figure 51 shows six crossings 
over a single bridge. The frequency spectrum is shown before the train is on the bridge, while the 
train is on the bridge, and after the train crosses the bridge. The fourth plot at the bottom shows 
the time domain signal with different colors showing the different sections of the signal.  

 
Recording the baseline dynamic response of the bridge could take a long time. As no 

experiments will be performed on the operational system, validation will occur when the 
algorithm is able to detect a fault of statistical significance that can be verified.  Currently we are 
continuing to collect data about the bridges—to better understand how they behave at different 
temperatures.   

In the coming months, we will apply existing signal processing and machine learning 
techniques to this dataset as well as try to develop new approaches.  

 
Expected Significance:  Ideally, we will find that we can use this technique to determine 

severity of damage, and location of damage. However, simply detecting a statistically significant 
change in the structure would be a huge breakthrough. This would allow the Port Authority to 
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prioritize when to send structural inspectors to a bridge. If nothing has changed in the bridge 
since the last inspection—this technique could save money. If something has happened before a 
scheduled inspection—this could save lives.  
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Conclusions 
  
 Over the course of this 23 month project we have made significant contributions in 
Indirect Structural Health Monitoring. This technology could provide an inexpensive way to 
continuously monitor the aging infrastructure both in the United States and abroad.  
 We have done fundamental work on understanding the vehicle bridge interaction, and the 
machine learning algorithms which will best detect changes in the bridge. And we have done 
practical work on efficiently collecting and storing data, and how we can work with agencies like 
the Port of Authority of Allegheny County to help them tackle the challenge of maintaining their 
assets.  
 Tasks 1 through 3 focused on a laboratory scale model and verified that indirect 
monitoring is in fact a viable method. We have shown we can detect small changes in a 
laboratory bridge in presence of environmental variables or in cases where there is uncertainty in 
the data. And we explored numerous types of damage including changes in rotational restrain, 
changes in damping ratio, and changes in the mass of the bridge. We have explored ways in 
which the fundamental features of the bridge change with damage so that the general trend can 
be understood. Without environmental variation, we can consistently achieve above 90 percent 
classification on the lab scale model. However adding some temperature variation reduces the 
classification accuracy down to roughly 70 percent. We have shown that the best algorithm thus 
far is a semi-supervised multiresolution classifier with label propagation and weighting.  New 
methods using graph models may improve the accuracy while accounting for changes in 
temperature.  
 Task 4, collecting data from new sources, began only towards the end of this project, 
although we hope to continue this work with future support from the University Transportation 
Center. By applying our novel algorithms to the operational data we are collecting, we hope to be 
able to detect subtle structural changes, while avoiding false positives due to changes in the 
environmental conditions. We also hope to apply our methodology to damage detection of the 
railway track, in addition to our work on bridges. This problem is of considerable interest to the 
rail industry, not only in terms of maintenance, but also safety. 
 As many of the bridges in our national inventory approach their design life, ubiquitous 
computing and cheap sensors combined with novel signal processing algorithms may offer a 
solution.  The work we have done with this funding, in particular, the papers we have published, 
bring us one step closer to harnessing this data to understand the state of our infrastructure. .  

Perhaps the most exciting outcome of this research is the finding that algorithms 
developed for image processing can be applied to bridge monitoring. The semi-supervised 
approach described in the second half of Task 3 shows that even when only 10 percent of the 
data is labeled, we can still classify the state of the bridge. We hope we can continue to find such 
exciting connect when analyzing the data we gather from the Port Authority Trains.  And we 
hope to develop new tools which help federal, state and local agencies maintain a safe and 
efficient infrastructure on tightly constrained budgets.     
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Abstract. An indirect approach is explored for structural health bridge monitoring allowing for wide, yet cost-
effective, bridge stock coverage. The detection capability of the approach is tested in a laboratory setting for 
three different reversible proxy types of damage scenarios: changes in the support conditions (rotational 
restraint), additional damping, and an added mass at the midspan. A set of frequency features is used in 
conjunction with a support vector machine classifier on data measured from a passing vehicle at the wheel and 
suspension levels, and directly from the bridge structure for comparison. For each type of damage, four levels of 
severity were explored. The results show that for each damage type, the classification accuracy based on data 
measured from the passing vehicle is, on average, as good as or better than the classification accuracy based on 
data measured from the bridge. Classification accuracy showed a steady trend for low (1-1.75 m/s) and high 
vehicle speeds (2-2.75 m/s), with a decrease of about 7% for the latter. These results show promise towards a 
highly mobile structural health bridge monitoring system for wide and cost-effective bridge stock coverage. 
 
Keywords: Indirect SHM, laboratory experiment, damage detection, classification. 

1. Introduction  

The importance and need for bridge inspection and monitoring has increasingly become more 
apparent in the aftermath of catastrophic collapses, such as those that have occurred recently around the world 
(I-35W bridge over Mississippi River, USA, Aug 1 2007; Shershah Bridge, Pakistan, Sep 1 2007; Harp Road 
bridge, USA, Aug 15 2007; Loncomilla Bridge, Chile, Nov 18, 2004). In many countries, the assessment of 
bridges is done at fixed time intervals. For example, in the United States, bridges are visually inspected every 
two years, and then, if signs of deterioration are visible, more accurate evaluation is conducted using 
commercially available nondestructive evaluation techniques such as: acoustic emission, electromagnetic testing 
or liquid penetrant testing, among others. In the past two decades, the interest of both researchers and 
practitioners in structural health monitoring (SHM) methods has escalated. SHM allows for the evolution of the 
maintenance practice from “time-based” to “condition-based”, which implies that a sensing system, integrated 
with the structure or the mechanical system, performs periodically-spaced measurements. The statistical analysis 
of damage-sensitive features extracted from these measurements enables one to determine the current state of 
system health and to notify in real time when degradation or damage occurs (Doebling et al 1998, Carden and 
Fanning 2004, Farrar and Worden 2007). This approach can be referred to as direct bridge monitoring. The 
objective of any direct bridge monitoring system is to establish the state of a bridge in terms of presence, 
location, severity, and type of damage (Rytter 1993, Farrar and Worden 2007). Owing to the size and the 
number of functionally obsolete or structurally deficient bridges in the United States alone (FHWA 2011), the 
price tag for instrumenting all of them is still prohibitive despite recent advances in the area of SHM (e.g., 
Chang 2011, Frangopol et al 2010, Casciati and Giordano 2010). 

In this paper, the hypothesis experimentally investigated is that an array of sensors, mounted on 
moving vehicles that travel across the bridge of interest, can be helpful in identifying structural damage and thus 
serve as an indicator for more detailed analysis and evaluation that might include in-depth bridge inspection and 
specific instrumentation. This approach can be referred to as indirect health monitoring. The indirect approach 
can be used in multiple un-instrumented bridges at a low cost and without the need for on-site maintenance. It 
may be viewed as complementary and, if needed, as a substitute for a global direct health monitoring approach 

                                                        
* The work was performed while the corresponding author was with the Department of Civil and Environmental Engineering, 
Carnegie Mellon University, Pittsburgh, PA 15213, USA. Corresponding author, E-mail: facerda@udec.cl 
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if proved to be accurate and effective. Thus, this strategy might help fulfill the need for a practical and cost-
effective solution for broad coverage of the bridge population, and help mitigate the costs associated with 
existing direct SHM practices (Farhey 2005, 2007, Frangopol et al. 2008).  

The idea of indirect SHM is not new. It was first formulated by Yang (2004, 2005) who modeled the 
interaction of a sprung mass traveling on an Euler-Bernoulli beam to extract the beam’s fundamental natural 
frequency. The model was validated experimentally using an instrumented two-wheeled cart attached to a 
vehicle traveling over a simply supported girder bridge (Lin and Yang 2005). A number of additional studies 
have been conducted since. In each case, the goal was to detect damage, develop more accurate techniques using 
limited data for identifying dynamic parameters such as the natural frequencies of the bridge and damping, and 
to validate these techniques by applying them to increasingly more realistic situations. Some of these efforts are 
reported in what follows.  

Yang and Chang (2009) report results associated with field experiments where the first two natural 
frequencies of a bridge are extracted from the vehicle response by using empirical mode decomposition. Bu et al. 
(2006) develop a damage identification scheme based on optimizing a damage parameter vector.  The dynamic 
response of a vehicle moving on top of a simply supported Euler–Bernoulli beam is simulated by a 
mathematical model.  The damage is defined in terms of the reduction of flexural stiffness.  The model 
incorporates noise measurements, road surface roughness, and errors such as underestimating vehicle 
parameters or bridge flexural stiffness.  

Kim and Kawatani (2008) develop a pseudo-static damage detection method that makes use of the 
coupled vibration of a vehicle-bridge system.  The method requires data collected from both the bridge and the 
vehicle to characterize the damage.  A numerical model that includes the roadway roughness effect is used to 
test the approach. The pseudo-static approach is subsequently validated experimentally for different vehicle 
speeds and different reduction amounts of girder’s moment of inertia (Kim et al. 2010).  McGetrick et al. 
(2009) model a simplified quarter car-bridge interaction to extract the fundamental natural frequency and 
corresponding damping of the bridge from the spectra of the vehicle accelerations. They found that better 
accuracy is achieved at lower speeds and smoother road profiles.  Moreover, the magnitudes of the acceleration 
power spectral density’s peaks decrease with increasing bridge damping. This decrease is easier to detect with a 
smoother road profile. This work is validated experimentally by observing the effects of a vehicle moving across 
a steel girder that included a road surface profile different vehicle mass and speeds (McGetrick et al. 2010). 

Isemoto et al. (2010) develop a hypothesis-testing scheme for damage detection based on the vehicle 
vertical acceleration data. An experimental vehicle-bridge model including roadway roughness, is used.  
However, only severe damage scenarios were identified. Miyamoto and Yabe (2011) exploit the vibration 
induced by a public bus for the indirect health monitoring of existing short- and medium-span 
reinforced/prestressed concrete bridges.  The tests show a correlation between the vehicle vertical acceleration 
and the bridge vibration at midspan. Using a numerical 3D finite element model, they find the distribution of 
characteristic deflection for a particular driving speed and two severe damage scenarios.  

Yin and Tang (2011) used the vertical displacement from the vehicle to identify tension loss and deck 
damage from numerical models. The relative displacement of a passing vehicle of a bridge with known damaged 
conditions is used to generate a vector basis.  A proper orthogonal decomposition of the relative displacement 
of a vehicle passing a bridge with an unknown damage condition is optimized with a known basis, and 
parameters of the unknown damaged bridges are reconstructed.  Sirigoringo and Fujino (2012) estimate the 
fundamental natural frequency of a bridge using the response of a passing instrumented vehicle. They conduct 
full-scale experiments on a simply supported short span bridge by using a light commercial vehicle. The 
frequency spectra from the vehicle’s dynamic responses reveal the first natural frequency of the bridge. The 
experimental study considered traveling speed ranging from 10 to 30 m/s. More recently, González et al. (2012) 
proposed a methodology to identify the damping of a bridge from the vehicle response.  

The initial results of an ongoing study are shown here. This work aims at bridging the gap from 
parameter identification to bridge health monitoring in an indirect fashion. A laboratory bridge model subjected 
to different vehicle speeds, two different types of reversible damage scenarios, and reversible changes of 
structural boundary conditions was used. In addition to the indirect measurement of the bridge motion obtained 
through the vehicle vibration, three sensors are installed directly on the bridge. Contrary to previous studies, the 
indirect and the direct data are used independently, and a new detection algorithm is introduced. This 
experimental setup allows for the comparison of the indirect and the direct strategies and evaluation of the 
effectiveness of the indirect damage detection algorithm.  

The authors acknowledge that implementing the indirect monitoring approach assumes as the “ground 
truth” that the bridge is in an original sound condition. At this early research stage, only data from a specific 
pristine bridge is collected as the baseline and classified against data collected when the same bridge is modified. 
The baseline is taken from the response of the vehicle; therefore, there is no need to instrument the bridge.  
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2. Experimental Setup and Protocol 

A laboratory experimental setup is built to collect data from a vehicle, which could be used to detect 
changes in the condition of the bridge. Using this model, acceleration data from a bridge structure and a vehicle 
passing over it is collected and later analyzed for characterizing vehicle-bridge interaction patterns. The 
complete experimental setup consists of mechanical structural components that make up the bridge and vehicle 
system, a vehicle motion control system, and data acquisition equipment. The different mechanical components 
resemble a simply supported bridge structure and a four-wheeled vehicle with an independent suspension 
system at each wheel. The motion control equipment is able to move the vehicle over an acceleration ramp, the 
simply supported bridge and deceleration ramp. Through this path, the vehicle accelerates until it reaches a 
target speed before the end of the acceleration ramp, and then maintains a constant speed over the bridge, 
followed by a deceleration of the vehicle so that it stops at the end of the deceleration ramp. The data acquisition 
system records accelerations at different locations on the vehicle and the bridge, as well as the position of the 
vehicle. This experimental setup was inspired by the work of Kim et al. (2010).  

 

 

 
Fig. 1: Experimental setup: (a) Elevation of setup, (b) Bridge bottom view and (c) Bridge cross section 

(d) Setup overview picture. 

An overview of the setup is shown in Fig. 1. The vehicle, approximately in the middle of Fig. 1, is pulled by 
a belt system. The belt is a neoprene belt, 1/4" width. The travelling path of the vehicle corresponds to the 
acceleration/deceleration ramps and the bridge as labeled in Fig. 1(a). The simply supported bridge structure is 
in the middle of the travelling path. Below the simply supported bridge there are two “reaction beams” that are 
connected to the bridge end supports and used to support added dampers. 
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The vehicle is instrumented with Vibra-metrics accelerometers (Model 5102) powered by cables supported 
by a cable delivery system that moves parallel to the vehicle. The cables and the vehicle are propelled by a 
motor at the leftmost part of the experimental setup.  

2.1. Details of the Bridge and Vehicle Models 

The bridge is simply supported by a roller support at the left and a pinned support at the right. The vehicle 
enters the bridge from the left. The whole system is constructed to act as a closed force loop system. The 
longitudinal forces generated by the motor to move the vehicle are transmitted between the two supports by two 
connecting beams labeled as “reaction beams” in Fig. 1(a). The bridge structure is instrumented with three 5102 
Vibra-metrics accelerometers as in Fig. 1(b). The sensors are equally spaced along the longitudinal direction of 
the bridge and named accordingly as B1/4L, B1/2L and B3/4L where L=2438 mm. The reaction beams act as a 
support for localized dampers that connect to the bridge structure as in Fig. 1(c).The bridge deck consists of an 
aluminum plate, and two angle beams act as the bridge girders. On top of the plate two angle beams serve as 
rails for the travel path of the vehicle. Detailed dimensions of the bridge section are shown in Fig. 1(c) and a 
picture of the whole setup is shown in Fig. 1(d). 
The bridge has a total weight of 18.3 kg, a fundamental natural frequency of 7.23 Hz, and fraction of critical 
damping of 3.6 percent. The corresponding aluminum modulus of elasticity and identified section second 
moment of area are E=6.9 E10N/m2 and I≅8.15E-8 m4 respectively. These are the properties of the bridge in the 
pristine condition, later referred to as Scenario 1. The bridge and vehicle models do not resemble a particular 
full-scale structure. They are treated as a vehicle/bridge system in itself. However, the dimensions follow an 
approximate scaling factor of S=8 to those of a real structure. Following the scaling laws for elastic vibration 
analysis, this is proxy for a 2.6 Hz simply supported girder structure. The speed has a scaling factor of S1/2.  

Fig. 2(a) shows a 3D view of the vehicle constructed for the experimental setup with the main components 
labeled. The vehicle is instrumented with two accelerometers connected to the suspension shafts in order to 
record the acceleration at the wheel level and two accelerometers placed on the suspension to acquire data 
filtered by the suspension system. To keep the symmetry of the vehicle, two calibrated weights are placed on top 
of the un-sensed wheel shafts. Similarly to the bridge structure, the vehicle is built mainly with aluminum parts. 

Two reference points are labeled on the longitudinal direction of the vehicle as points A Vehicle (A.V) and 
B Vehicle (B.V). A top view of the vehicle is shown in Fig. 2(b). The length and width of the vehicle as well as 
the labels assigned to each of the four sensors are also indicated. The sensor labels are defined by their position 
and location to the reference point. Suspension A.V and Suspension B.V are labeled S.A.V and S.B.V 
respectively, and the two Wheel level sensor locations are labeled W.A.V and W.B.V. A picture of the model 
vehicle is shown in Fig. 2(c). 

 

  
Fig. 2: Experimental vehicle CAD drawings. (a) 3D view. (b) Top view. (c) Vehicle picture. 
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The frequency of the A.V and B.V axles of the vehicle are examined through free vibration 
experiments on the suspension. As the vehicle moves along the traveling path, the lengths of the belts at both 
sides of the vehicle vary. This variation affects the vehicle’s dynamics as a whole vehicle-belt system. Free 
vibration experiments are performed on the vehicle-belt system with the vehicle at different locations. A 
frequency of about 6 Hz can be identified for both axles by averaging the frequency power spectrum obtained 
from five free vibration signals. However, depending on the location of the vehicle, other frequencies are also 
present in the system. The varying frequencies introduced by the belt can be regarded as system noise and make 
the damage classification task more difficult; good results in such conditions make therefore a stronger point for 
the classification results shown later in this paper.  

Another set of free-vibration experiments with the belt disconnected from the vehicle are run for both 
axles. The vehicle frequencies are summarized in   Table 1. Damping in both axles is observed to be similar to 
the critical damping; that is, at the limit between vibration and non-vibration. The vehicle/bridge ratio of the 
model is about 25%, which is higher than what would be expected in a full-scale scenario.  

 
  Table 1: Vehicle properties. 

Vehicle weight [kg] 4.8 

A.V axle frequency [Hz] 5.0 

B.V axle frequency [Hz] 5.5 
 

2.2. Motion Control and Data Acquisition Equipment 

A National Instruments® PXI system running in LabView® is assembled to operate the instrumented 
vehicle and to allow for data acquisition and storage. The system consists of a PXI Chassis (NI PXI 1031) with 
a motion control card (NI PXI 7342), a motion interface (UMI 7772), a stepper drive (P70360) and a dual shaft 
stepper motor (NEMA 34). A feedback loop for position is achieved with an encoder. The acceleration data are 
digitized and stored for post-processing using two digitizers (NI 9234) ) in an NI CompactDAQ module. Both 
digitizers feed the data into the same data file. The effective sampling rate is about 1650 Hz, the minimum for 
the equipment. 

A physical mark is made at the beginning and at the end of the travelling path of the vehicle to 
produce an acceleration spike that is used to align all the acceleration runs of a specific scenario. 

2.3. Protocol 

Three different types of “damage” scenarios are designed: (1) variations on the support condition by 
imposing rotational restraints, 2) increase of damping at different locations, and (3) a mass increase at the 
midspan. For each type, four levels of severity are devised in order to obtain a total of 12 different damage 
scenarios. Table 2 shows the twelve conditions of damage. For each case the resonance frequency and the 
critical damping are reported and compared to the baseline, i.e. Scenario 1. For all cases, the fundamental 
natural frequency of vibration and the damping coefficient are determined by means of conventional free-
vibration experiments.  

The rotational restraint mechanism is built into each of the four beam supports of the bridge model. As 
shown in Fig. 3(a), an aluminum bar is attached to the main girder of the bridge at one extreme and connected to 
the support at the other extreme to provide vertical restraint. The plate is drilled down to 6.35 mm with 12.7 mm 
radius to provide only a partial restraint. 

     
Fig. 3: Detail 1 – Roller support - Rotational restraint (a) technical drawing and (b) picture. 
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Variation of the rotational restraints simulates the case of rubber bearings becoming stiffer in time or 
steel corrosion occurring on rocker supports (Chajes et al. 1997, Kim et al. 2009). This condition is a common 
cause of undesired stress in the structure, and therefore a reduction in the load capacity. In Table 2, the 
variations of the rotational restraints are described as scenarios SC2 to SC5. In Scenarios 2-5, one, two, three 
and all four supports are restrained, respectively. As expected, the greater the number of rotational restraints, the 
higher the fundamental frequency, which provides an indicator of change to the bridge structure. 

The variation of localized damping is achieved by adding dampers to the bridge at those locations 
schematized in Table 2 (Scenarios 6 to 9) according to the scheme presented in Fig. 1(c). A set of AIRPOT 
adjustable dampers is used. The dampers are calibrated to provide a damping coefficient c≅1.3 N·s/m. In 
Scenarios 6-9, one, two, four and six dampers, respectively are attached to the bridge structure as depicted in the 
schematics of Table 2. 

Finally, the concentrated mass at the midspan of the structure consisted of weights equal to 50 g, 100 
g , 200g and 300 g, and referred to as Scenarios 10 to 13, respectively, in 错误! 未找到引用源。 . As 
expected, the presence of the mass, decreased the fundamental frequency of vibration of the structure. 

Eight different vehicle speeds, varying from 1 m/s to 2.75 m/s, are considered for each damage 
scenario. The speed range of the experiments is close to 10-30 km/hr range in a full-case structure. 

 
Table 2: Damage scenarios. 

Schematics	   SC f [Hz] % f shift %ʓcrit % ʓ crit  shift  

 01 7.23 0.00 3.63 0.00  

 02 7.46 3.17 6.34 74.9  

 03 7.66 6.00 6.45 77.8  

 04 8.11 12.2 7.97 120  

 05 8.56 18.4 9.37 158  

 06 7.24 0.17 8.52 135  

 07 7.25 0.28 11.3 212  

 08 7.28 0.73 26.4 629  

 09 7.30 0.98 31.4 767  

 10 7.19 -0.56 4.44 22.5  

 11 7.18 -0.66 4.34 19.5  

 12 7.14 -1.29 4.07 12.3  

 13 7.09 -1.85 4.37 20.5  

 Because of the design of the system, when applying additional damping the system does not behave as 
a single degree of freedom damped system. In Scenarios 06-09 from Table 2 with additional damping, there is a 
coupling effect between the stiffness of the reaction beams and the bridge structure causing a slight increase in 
the measured fundamental frequency. This effect was verified with an analytical model.  

3. Signal Analysis and Classification 

The task of distinguishing various bridge conditions is a signal-processing task of classification. The 
classification process is described first in general and then is explained how it is used in the classification 
experiments. Assume a real signal x of length N, i.e., X ⊂ RN  (see Original signal in Fig. 4). The problem, 
then, can be formulated as that of designing a map from the signal space of vibrational signals NX R⊂ to a 
response space of class labels {1,2,..., }Y C⊂  (in Fig. 4 these are Damaged and Pristine labels). That is, the 
decision :d X Y→ is the map that associates an input signal with a class label.  

 A general classification system consists of a feature extractor and a classifier (see Fig. 4). Since the 
dimensionality of the input space is typically large, the feature extractor is introduced to reduce this 
dimensionality by setting up a feature space kF R⊂  where k N≤ between the input space and the response 
space. The feature extractor is the map defined as :f X F→ and the classifier as a map :g F Y→ . 
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Fig. 4: General classification system. 

3.1. Preprocessing  

Fig. 5 shows the signal obtained from the vibration of the vehicle, from the time when it starts moving, 
through its motion across the bridge, until it has come to a stop. The only relevant information for the bridge 
characterization, however, is that of the vehicle moving across the bridge. A reference start time is chosen as the 
moment when the rear wheels enter the bridge and reference end time the moment when the front wheels exit 
the bridge; that portion of the signal is highlighted in Fig. 5(a)-(d) by the two vertical lines. The extracted 
portions of the signals are then normalized to have zero mean and unit variance. 

 
(a) Sensor B ½ L, SC 01, Pristine.    (b) Sensor B ½ L, SC 02, Damaged. 

 
(c) Sensor WBV, SC 01, Pristine.    (d) Sensor WBV, SC 02, Damaged. 

Fig. 5: Time-domain signals. 

3.2. Feature Extraction 
A linear structural system can be characterized in the frequency domain by its predominant natural 

frequencies, their corresponding mode shapes and damping values. The use of frequency spectra characteristics 
for damage detection is explored in this work.  

The fundamental frequency of the bridge, as shown in Table 2 ranges from 7.2 to 8.6 Hz 
approximately. The nth frequency of a simple supported beam is n2·f1, where f1 is the first mode. The second 
frequency range goes approximately from 28 to 35 Hz. However, this range is reduced because of the presence 
of the vehicle mass acting on the bridge. Considering the fundamental natural frequencies of the damage 
scenarios and the vehicle main bouncing frequency, the analysis is limited arbitrarily to a frequency spectrum of 
up to 33 Hz allowing for a second bridge mode to influence the response.  

For example, looking at Fig. 6 and the spectra (discrete Fourier transform, DFT) of the signals from 
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two different scenarios, a pristine and a damaged one, it can be seen that, potentially, the responses can be told 
apart from separate sensors by looking at magnitudes of certain characteristic frequencies. Thus, the authors 
decided to use frequencies as features, hoping to distinguish among different scenarios. The use of additional 
features might even improve the results shown later in this study. The task is then to find a set of such features 
to maximize differentiation between classes. 

 
(a) Two scenarios, sensor B ½ L.       (b) Two scenarios, sensor W.B.V. 

Fig. 6: Discrete Fourier transform of the signal. 

Since the acceleration signal contains a large number of spikes and other transient signals, the spectra 
are noisy with little consistency between runs. To reduce noise and keep non-transient frequencies of interest, a 
typical approach is to average the spectra across frequency.  Averaging the frequency spectra is a well-known 
technique used in noisy signal processing. For example, in radar signal analysis, a redundant number of antennas 
capture noisy signals from the same source and average them to increase the signal to noise ratio (Keeler and 
Passarelli, 1989).  

After averaging, the frequency-domain energy distribution for each scenario is calculated. This 
technique relies on the assumption that each scenario has its unique energy distribution in the frequency domain. 
Since the goal is to tell classes apart and not individual runs, all the energy distributions from the same class are 
averaged. The mean energy distribution is used as the representative member of that class.  

Fig. 7 shows the distinctive presence of some frequencies that are neither from the bridge nor the 
vehicle. For example, the most significant peaks are around 13 Hz and 25 Hz in Fig. 7(b). Considering the 
nature of the problem, the analyzed signals represent the portion of time where the vehicle is traversing the 
bridge, therefore, these signals do not represent a single structure, rather, a structure made up of the vehicle-
bridge coupled effect with vehicle at different locations along the bridge. 

 
(a) 2 scenarios, sensor B ½ L.    (b) 2 scenarios, sensor W.B.V. 

Fig. 7: Mean energy distribution (normalized to unit energy). 
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where w denotes Fourier basis vector and j denotes the frequency band. To evaluate the power of 
discrimination of every Fourier basis vector, we need a discriminant measure D  to evaluate the power of 
discrimination. The higher discriminant power is assumed to provide higher discrimination between classes.  

For the j th Fourier basis vector, the power of discrimination Δ  is denoted by 

1({ ( )} )C
j c cD j =Δ = Γ .      (2) 
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There exist numerous choices for the discriminant measure; the J-divergence was used in this work 
(Kullback and Leibler 1951) because it is one of the most famous measurements to quantify the difference or 
discrepancy of probability density functions (PDFs) in information theory. Moreover, by definition it is additive, 
which helps in multiclass situations. Let 1{ }n

i ip p == , 1{ }n
i iq q == be two nonnegative sequences with 

1i ip q= =∑ ∑ , J-divergence between p  and q is: 

1 1
( , ) log log

n n
i i

i i
i ii i

p qJ p q p q
q p= =

= +∑ ∑
     (3) 

Fig. 8 shows a graph of the discriminant power between the frequency signals previously depicted in 
Fig. 7. 

 
(a) Sensor B ½ L.            (b) Sensor W.B.V. 

Fig. 8: Discriminant power (normalized to unit discriminant power). 

To help understand the feature selection method, a summary of the assumptions and conclusions thus 
far is presented: 1) To differentiate signals from different scenarios, frequencies are used as features. 2) If the 
discriminant power is higher, it is easier to discriminate between classes. The discriminant power will thus 
predict how well a feature will perform during classification. 3) A small number of frequencies provide most of 
the discriminative power; in other words, the frequency feature set is sparse. Just those frequencies that have 
large discriminative power are selected (this is called nonlinear approximation); see Fig. 9. 

 

Fig. 9: Summary of feature extraction process. 

This selection method performs nonlinear approximation in the Fourier domain and is data adaptive. 
Different data may give different frequency information and different discriminant powers. Since this method 
learns from the data and always chooses the frequencies with large discriminant power, it is more robust than 
traditional linear approximation. 

Fig. 10 shows the feature space of the first three features. Blue circles denote the pristine scenario and 
red asterisks the damaged scenario. Using just three Fourier discriminant basis vectors, it is easy to separate the 
two classes. 

Algorithm (Fourier Discriminant Basis Vectors Selection) 
Task: Find ( )k n≤  most discriminant Fourier basis vectors 

Given a dataset consisting of C  classes of signals ( )
1 1{{ } }cNc C

i i cx = =  
Step 1: Take the DFT of x. 
Step 2: Construct Fourier energy map cΓ for 1,...,c C=  

Step 3: Determine the power of discrimination 1({ ( )} )C
j c cD j =Δ = Γ  for every Fourier basis vector jw  

Step 4: Order Fourier basis vectors by their power of discrimination. 
Step 5: Use ( )k n≤ most discriminant Fourier basis vectors for constructing classifier 
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  (a) 2 scenarios, sensor B ½ L.   (b) 2 scenarios, sensor W.B.V. 

Fig. 10: Clustering of two scenarios. 
 

4. Classification 

The second part of a classification system is the classifier itself. It takes as input a feature vector and 
outputs a class label. The classification problem here is called supervised learning, as a labeled training set is 
given. Many different classifiers are available, such as naïve Bayes, neural networks and many others (Duda et 
al 2000). In this work, the support vector machine (SVM) classifier is chosen, which is now briefly described. 

When looking for the best boundary to separate classes, two things are desired: 1) the boundary should 
give high classification accuracy; 2) avoid overfitting. To satisfy these two requirements, SVM maximizes the 
margin, that is, the distance between a decision boundary and a data point, and expresses it as a function of the 
weight vector and bias of the separating hyperplane, which is used to separate the space in two.  

There are 30 samples in each class. If 3 out of 30 samples are randomly chosen and averaged, then 
there will be 4060 potential different choices (30 choose 3 binomial coefficients). As the study dataset, 1000 out 
of 4060 samples are randomly chosen for each scenario. A 20-fold cross validation is performed. Each time, 
2000 data samples, consisting of 1900 training samples and 100 testing samples, are used to create and test the 
SVM-based classifier. We then used our Fourier discriminant basis search algorithm and selected the top 5 
frequencies that provide the largest discriminant power as features. Then kernel SVM is used as the classifier. 

5. Results and Discussion 

The results of the classification experiments are presented and discussed in terms of the classification 
accuracy, which is defined as the number of test samples correctly classified divided by the total number of test 
samples. 

In the two classes defined, pristine and damaged, scenarios 2-13 belonged to the latter class. The data 
collected from all seven accelerometers are used.  

Fig. 11 shows the variation of the average classification accuracy for different variables. Fig. 11(a) 
shows the average across the different severities, speeds and sensor locations for each damage type. The three 
bridge sensors, B1/4L, B1/2L and B3/4L, are averaged and referred to as “Bridge”, the two sensors at the wheel 
level,  (W.A.V and W.B.V) are averaged and referred to as “Wheel” and the two sensors at the suspension 
level,  (S.A.V and S.B.V) are averaged and referred to as “Suspension”. The standard deviation across the 
averaged variables is shown at the top of each bar. An average classification accuracy for all the sensors for 
each damage type is depicted with a black line and corresponding percentage. The baseline in Fig. 11(a) and (b) 
is 50%, which is the expected probability of randomly choosing between two labels (pristine or damaged). 
Classification accuracy values of over 90% are obtained despite the subtle changes introduced in the bridge 
structure. The amount of change inflicted is deliberately small to test the detection capability of the combined 
indirect approach using the signal processing techniques described in Section 错误! 未找到引用源。 . The 
signals from the sensors located at the wheel level are classified consistently across the different damage types, 
and more accurately than those from the sensors located on the bridge or on the vehicle at the suspension level.  

The classification results in Fig. 11(b) show how the average classification accuracy for all damage 
scenarios varies for different vehicle speeds. Similarly to Fig. 11(a), each bar represents the mean accuracy 
classification across the different damage scenarios. At the top of each bar, the corresponding standard deviation 
is shown. Looking at Fig. 11(b), one can see that there is a jump between the first four speeds, between 1 and 
1.75 m/s and the four higher speeds from 2 to 2.75 m/s. The average across the two groups of speeds is shown 
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by a black line and corresponding percentage. There is about a 7% difference in classification accuracy between 
these two speed ranges.  This classification accuracy difference is consistent for the average classification 
accuracy of the sensors at the different locations (i.e., Bridge, Wheel and Suspension). 
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Fig. 11: Classification accuracy results. 

Fig. 12 illustrates the sensitivity of the classification method to different levels of severity of the 
different damage types inflicted in the damage scenarios. Fig. 12(a), (b) and (c) show the average classification 
for the different damage severity levels for the rotational restraint damage type for different vehicle speeds. For 
all of these graphs, the thickness of the line depicts the level of damage. The thinnest line indicates the least 
amount of damage inflicted (e.g., only one of four rotational restraints invoked in SC2) and the thickest linethe 
maximum amount of damage inflicted (e.g., all four rotational restraints invoked in SC5). 

Fig. 12(a), (b) and (c) show the average classification accuracy for each rotational restraint damage 
severity level for the signals from all the sensors on the bridge, all the sensors on the suspension, and all the 
sensors on the wheel, respectively. Fig. 12(d), (e), and (f) break the results down for each sensor and show the 
average classification accuracy for each rotational restraint damage severity level for each signal from the three 
sensors on the bridge, B1/4L, B1/2L and B3/4L; from the two sensors on the suspension, S.A.V and S.B.V; and 
from the two sensors on the wheel, W.A.V and W.B.V, respectively.  

Fig. 12 demonstrates that the classification accuracy for SC2 is lower than for the other rotational 
restraint scenarios (SC3, SC4 and SC5). For SC2, there is a variation in the classification accuracy with respect 
to speed. However, more severe rotational restraint scenarios seem to be less dependent on speed, with high 
classification accuracy for low speeds and a slight parabolic decrease for higher speeds. No significant 
difference in the classification accuracy is apparent in Fig. 12(a), (b) and (c) regarding the sensor location. This 
shows that, in terms of classification accuracy, the signal processing approach performs well with sensor data 
from the vehicle (sensor or wheel) as with sensor data directly measured on the bridge. The wheel sensors 
perform slightly better than the suspension or bridge sensors.  In other words, the results indicate that in this 
particular set of experiments, and for the signal processing scheme used, the indirect approach has a 
classification accuracy that is as good as that of the direct approach. Fig. 12(d), (e), and (f) show that the lowest 
classification accuracies are those of the least severe damage scenarios. The most severe scenarios are all 
grouped with high classification accuracies. 
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Fig. 12: Classification results for rotational restraint scenarios. 

Fig. 13 and Fig. 14 are similar in nature to Fig. 12, but display the classification accuracies for the two 
other damage types explored: the scenarios with increasing amounts of damping and with increasing amounts of 
mass. Fig. 13(a), (b) and (c) show Scenario 6, the scenario with the single damper, as the one with the least 
classification accuracy across all speeds. In terms of vehicle speed, a decrease in the classification accuracy 
appears to occur when the vehicle speed is 2 m/s as shown in Fig. 13(a). The same observations from Fig. 12 
apply to Fig. 13 as well. There is a slight decrease of the classification accuracy at higher speeds, and the 
classification accuracy seems to be independent of the sensor location; that is, there is little difference in the 
classification capability between the direct and the indirect approaches. 

Fig. 14 shows the classification results for the scenarios with a mass increase at the midspan. Even 
though the inflicted change in the bridge structure is quite subtle, the classification accuracy is high, especially 
at lower speeds. The same observations made for Fig. 12 and Fig. 13 are valid for Fig. 14 as well, that is, 
classification accuracies exhibit small variations with respect to the vehicle speed and the sensor locations. 
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Fig. 13: Classification results for damping increase scenarios. 
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Fig. 14: Classification results for concentrated mass scenarios. 
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6. Conclusions 

The damage detection capability of an indirect bridge monitoring approach is studied by means of data 
collected from moving vehicles and applying signal processing techniques to detect damage of a bridge. The 
study uses data from a laboratory vehicle-bridge physical model. The indirect monitoring approach requires no 
pre-condition on the bridge and is pursued by the authors as an economical and effective bridge SHM approach 
for a large bridge stock. However, in a full-scale deployment, some bridge parameters such as their geometric 
configuration and location will be necessary for data pre-processing. 

To perform numerous test repetitions, a fully automated vehicle-bridge model needed to be built. In this 
study, the amount of experimental data samples is significantly greater than that in previous experiments. Each 
scenario is run 30 times at eight different velocities. Three different reversible damage proxy types were built 
into the experimental setting, and each damage type had four different severity scenarios. 

The synchronized acceleration data from the bridge and the vehicle, and the vehicle position data, allowed 
for the comparison of the direct and indirect approaches in terms of the accuracy with which each could classify 
the existence of damage for different extents of damage.  

A feature extraction technique based on averaging the power spectrum from a set of data is used to achieve 
high noise reduction. Then, features extracted from the Fourier domain are automatically chosen from the 
denoised data samples based on their significance and classified using an SVM classifier. The use of other 
features and signal processing techniques will be pursued in future research. However, using frequencies and the 
specific signal processing scheme presented, allowed comparing the direct and indirect monitoring approaches 
damage detection capability and trends regarding different types of damage, severities of damage and vehicle 
speeds. 

High classification accuracy is achieved across three distinct types of changes inflicted into the bridge 
structure: 1) a change in the support conditions obtained by introducing rotational restraints at the supports; 2) 
an increase in the damping of the bridge structure; and 3) a localized mass increase at the midspan of the bridge. 

The severity of the changes inflicted in the bridge structure is consistent with higher classification accuracy. 
For example, SC3, SC4 and SC5 imposed more significant changes into the bridge structure than SC2, and 
consistently higher classification accuracy is obtained. Nonetheless, the classification accuracy achieved for the 
subtle change inflicted on SC2 is on average above 85%. 

The detection of the various changes in the bridge structure is quite insensitive to the vehicle speed. This 
effect can be important for practical applications where vehicle speeds cannot be readily controlled. However, a 
small jump is observed between the lower and higher speeds, where the classification accuracy decreases by 
about 7 percent at the higher speeds. At this early research stage, this sudden decrease can only be attributed to 
the non-linear nature of the dynamic interaction problem. 

Independent of the sensor location, high classification accuracy is achieved across all the sensors. The 
indirect and direct approaches seem to be equally effective for damage detection when applying the proposed 
signal processing techniques. Of the two sensor locations considered in the indirect approach, the wheel level 
and the suspension level, the sensors at the wheel level performed better than the sensors at the suspension level. 

Given the simplicity of the model considered, the results presented are strictly applicable only to the 
particular experimental setup and cannot be generalized for full-scale structures at this time. The authors have 
not yet tested whether the indirect approach can be generalized to different bridge structural configurations 
and/or with a specific range of dynamic properties. The effect of the vehicle/bridge ratio is not addressed in this 
work. This parameter will be subject of future investigations. On the other hand, a high degree of consistency is 
observed in the classification accuracies across the very different types and severity of damage and for different 
vehicle speeds. This gives us hope that our approach might be applicable to more general systems. 

In reality, data collected about actual damage conditions from the actual structure being monitored will not 
always be available for use in training. In this case, different detection schemes would have to be used, such as 
outlier detection, which would help to trigger more in-depth inspection. In the long run numerical and 
experimental models that proxy real case scenarios would allow learning the evolution of damage sensitive 
features obtained either in the direct or indirect fashion from different damaged scenarios. The early detection of 
those features will allow making more accurate diagnostics and prognosis about the overall structural health. 

Clearly, further research is needed to validate the robustness of these results for more realistic systems and 
conditions, including different roadway roughness profiles, atmospheric conditions and other bridge interaction 
variables such as different vehicle/bridge mass ratios, the effect of ongoing traffic and torsional effects on the 
bridge by non-symmetric loading from the vehicle path. 
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Abstract—We present a multiresolution classification frame-
work with semi-supervised learning on graphs with application
to the indirect bridge structural health monitoring. Classification
in real-world applications faces two main challenges: reliable
features can be hard to extract and few labeled signals are avail-
able for training. We propose a novel classification framework
to address these problems: we use a multiresolution framework
to reliably extract features and semi-supervised learning to train
both labeled and unlabeled signals. We further propose an adap-
tive graph filter for semi-supervised classification that allows for
classifying unlabeled as well as unseen signals and for correcting
mislabeled signals. We validate the proposed framework on
indirect bridge structural health monitoring and show that it
performs significantly better than previous approaches.

Index Terms—multiresolution classification, semi-supervised
learning, discrete signal processing on graphs, adaptive graph
filter, indirect bridge structural health monitoring

I. I NTRODUCTION

CLASSIFICATION is a signal processing task whose goal
is to design a map that associates each input signal with

a predefined class label. It is widely used in a number of
real-world applications, such as geophysical waveform clas-
sification [2], radar signal classification [3], structural health
monitoring [4], computer-aided diagnosis of medical images
and classification of biological images [5]–[7]. A generic
classification system consists of a feature extractor and a
classifier: a feature extractor reduces the dimensionality of
the problem, while a classifier labels the features. In many
real-world problems, however, reliable features can be hard to
extract; for example, different lighting conditions can derail ro-
bust face recognition [8]. Moreover, few labeled signals could
be available for training; for example, in bridge structural
health monitoring, one of the practical problems is that it is
financially impractical to label a large dataset, and thus, few
labeled signals are available.
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Fig. 1: Indirect bridge structural health monitoring system.
Acceleration signals are collected from a moving vehicle and
sent to a classification system, which identifies the bridge
status and reports it to a transportation authority.

To address these challenges, we propose a novel classi-
fication framework that takes advantage of supervised mul-
tiresolution classification [5], which extracts hidden features
in localized time-frequency regions (subbands), and semi-
supervised learning [9], which uses both labeled and unlabeled
signals for classification. We follow this by a novel weighting
algorithm that combines information from all the subbands
of all the signals to make a global decision in a semi-
supervised fashion. In the new framework, (1) each localized
subband contributes to the classification by its discriminative
power; and (2) both labeled and unlabeled signals provide
information.

We further propose an adaptive graph filter for semi-
supervised classification based on discrete signal processing on
graphs [10]; this adaptive graph filter extends the applications
of signal processing on graphs to classification [11]. A graph
signal is built by defining each node to be a signal in a given
dataset and each edge to be the similarity between each pair of
signals. The adaptive graph filter classifies signals by filtering
the graph signal and producing labels. This adaptive graph
filter allows for classifying unlabeled as well as unseen sig-
nals (together with regression) and for correcting mislabeled
signals. We further establish the connection to the theory of
diffusion maps [12] as well as that of diffusion wavelets [13].

We validate the proposed framework on a real-world classi-
fication problem, indirect bridge structural health monitoring.
Assessing and monitoring bridge health has been an intense
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Generic classification

X = {x(i)} input dataset i = 1, . . . , N
L = {x(i)} labeled dataset i = 1, . . . , L
U = {x(i)} unlabeled dataset i = L+ 1, . . . , N

Y = {y(i)} ground-truth labels forL i = 1, . . . , L

Ŷ = {ŷ(i)} estimated labels forU i = L+ 1, . . . , N
F feature extraction function
f(i) feature vector i = 1, . . . , N
q(i) ground-truth vector i = 1, . . . , L
Q ground-truth matrix L× C
q̂(i) confidence vector i = L+ 1, . . . , N

TABLE I: Parameters used in a generic classification system.

area of interest for some time, especially in the aftermath
of several bridge collapses. One of the practical problems in
bridge structural health monitoring is the scarcity of labeled
signals; these are collected based on visual inspection, an
expensive process. Moreover, visual inspection is not always
accurate, producing unreliable labels. Sensor-based structural
health monitoring systems have been proposed to automate
and improve on the visual inspection process. One approach
is to install strain gauges, accelerometers, or other sensors
directly on the bridge. The drawback is that such sensors still
require a sophisticated and expensive electronic infrastructure
with installation, maintenance and power support. Recently,
indirect approaches have been proposed [14]–[16], based on
using moving vehicles to collect signals from accelerometers
inside the vehicles, a more efficient solution that is expected
to be economically feasible by design (see Figure 1).

Because in indirect approaches less data is collected and
the data is noisier (as it is farther from the source), data
analysis plays a crucial role. Moreover, although it is easy
to get a large number of signals, it is expensive to label them
because the process involves physically inspecting the bridge
and determining its health; thus, very few signals are actually
labeled. We show that our proposed framework and algorithm
perform remarkably well for the case of a lab-scale bridge-
vehicle dynamic system.

Previous Work. Multiresolution classification was orig-
inally proposed for bioimaging applications with excellent
performance on classifying images of protein subcellular lo-
cations [5], developmental stages of Drosophila embryos [6],
germ layer components in teratomas [7], and even fingerprint
recognition [17]. Previous work on semi-supervised learning
includes generative mixture models with expectation maxi-
mization, co-training, transductive support vector machine and
graph-based approaches [9], each of which makes specific
assumptions on how to use unlabeled signals to help clas-
sification. Signal processing on graphs has been proposed
as a framework to build tools to analyze structured signals
and is a rather recent development [10], [11]. Indirect bridge
structural health monitoring determines the state of the bridge
by using advanced signal processing techniques to analyze
vibrational signals collected from the dynamic responses of
vehicles traversing a bridge [15], [16], [18], [19].

Contributions. Our contributions are as follows: We pro-
pose a novel

Algorithm 1 Generic classification

Input X input dataset
Y ground-truth labels forL

Output Ŷ estimated labels forU

Function C(X )
f(i) = F(x(i)) feature extraction
q̂(i) = C(f(i), Q) classification

ŷ(i) = argmaxc q̂
(i)
c

return Ŷ

• classification framework that combines multiresolution
classification with semi-supervised learning;

• adaptive graph filter for semi-supervised classification
that allows for classifying unlabeled as well as unseen
signals and for correcting mislabeled signals; and

• a tentative solution to indirect bridge structural health
monitoring.

Outline of the Paper. Section II states the problem and
briefly reviews multiresolution classification, semi-supervised
learning and signal processing on graphs; Section III describes
our proposed framework for semi-supervised multiresolution
classification, while Section IV describes our proposed adap-
tive graph filter for semi-supervised classification. The al-
gorithms are validated in Section V on acceleration signals
collected from a lab-scale bridge-vehicle dynamic system.
Section VI concludes with discussion and pointers to future
directions.

II. BACKGROUND AND PROBLEM FORMULATION

In this section, we cover the background material necessary
for the rest of the paper. We start with the classification
problem and then a supervised classification framework, mul-
tiresolution classification system. Next, we introduce signal
processing on graphs, which lays a foundation for our pro-
posed semi-supervised classifier. Finally, we overview semi-
supervised learning, which we will use in Section III.

A. Classification

The goal of classification is to label signals as belonging
to one of a number of given classes [20]. LetX = {x(i) ∈
R

D}Ni=1 be the given dataset withN = L+U signals, the first
L belonging to thelabeled datasetL = {x(i) ∈ X}Li=1, and
the lastU belonging to theunlabeled datasetU = {x(i) ∈
X}Ni=L+1. Thus, the inputs to the classifier are the datasetX
and theground-truth labelsY = {y(i) ∈ {1, 2, . . . , C}}Li=1

for the labeled datasetL, while the outputs are theestimated
labels Ŷ = {ŷ(i) ∈ {1, 2, . . . , C}}Ni=L+1 for the unlabeled
datasetU (see Table I and Algorithm 1).

We formulate the problem as designing a map that asso-
ciates an input signal to a class label with a certain probability.
That is, we view the label as a posterior probability vector
q̂ ∈ R

C , where thecth component,̂qc, is the probability that a
signal belongs to thecth class. Sincêq expresses a confidence
of an assigned label, we name it aconfidence vector. The
confidence vector for a labeled signali = 1, 2, . . . , L, is the
ground-truth vector, q ∈ R

C , with 0s everywhere except1 in
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Fig. 2: Supervised multiresolution classification decomposes
a signal into localized space-frequency subbands using a given
multiresolution transform, followed by feature extraction and
supervised classification in each subband, yielding a local
classification decision. A supervised weighting algorithm com-
bines all local decisions into a global decision.

positionc indicating membership in classc. Theground-truth
matrix Q =

[

q(1) q(2) . . . q(L)
]T

of sizeL× C collects
all L ground-truth vectors as its rows.

Typically, a generic classification system will have an inter-
mediate block between the the input and the output, afeature
extractor F, aimed at reducing the dimensionality of the
problem; this is followed by aclassifierC. If the classifier is
supervised, we denote it bySC (see Figure 2 and Algorithm 1).

B. Multiresolution Classification

Multiresolution classification is a supervised classification
framework (see Figure 2). It decomposes a signal intoS lo-
calized space-frequency subbands using multiresolution trans-
forms, both bases and frames [21]–[26]. In each subband,
multiresolution classification extracts features, classifies them,
and produces a local classification decision. A supervised
weighting algorithm combines all local decisions into a global
decision. This process implicitly mimics the use of wavelet
packets, a data-adaptive multiresolution technique [27], and is
summarized in Algorithm 2.

1) Multiresolution Decomposition:Multiresolution classi-
fication starts with decomposing signals using a given mul-
tiresolution transform into several localized space-frequency
subbands. For theith signal, the multiresolution coefficients
in the sth subband are

a(i)s = Ds(x
(i)),

whereDs is the multiresolution transform function in that sub-
band. It is implemented using a signal processing device called
a filter bank; we have a choice of a number of multiresolution
transformsD available, both nonredundant (bases) as well as
redundant ones (frames) [21]–[26].

2) Feature Extraction: In each subband, features are ex-
tracted depending on the application at hand. These features
can be generic features, such as texture, Gabor, etc [28]–[35],
or can be designed using expert knowledge [36]–[39]. For the
ith signal, the feature vector in subbands is

f (i)
s = Fs(a

(i)
s ),

whereFs is the feature extraction function in that subband;
different subbands can use different feature extraction func-
tions.

Algorithm 2 Multiresolution classification

Input X input dataset
Y ground-truth labels forL

Output Ŷ estimated labels forU

Parameters per subbands s = 1, . . . , S
Ds multiresolution function

a
(i)
s multiresolution coefficients

Fs feature extraction function

f
(i)
s feature vector

SCs supervised classification function

q̂
(i)
s confidence vector

for all subbands
SW supervised weighting function
Q̂(i) confidence matrix
w weight vector,‖w‖1= 1
q̂(i) final confidence vector

Function MRC(X )

a
(i)
s = Ds(x(i)) multiresolution decomposition

f
(i)
s = Fs(a

(i)
s ) feature extraction

q̂
(i)
s = SCs(f

(i)
s , Q) supervised classification

q̂(i) = SW(Q̂(i), Q) supervised weighting

ŷ(i) = argmaxc q̂
(i)
c

return Ŷ

3) Supervised Classification:In each subband, the features
extracted in the previous stage are fed into a supervised
classifier. The classifier can be any state-of-the-art classifier,
such as logistic regression or support vector machine [20]. For
the ith signal, the confidence vector in thesth subband is

q̂(i)s = SCs(f
(i)
s , Q),

where SCs is the supervised classification function in that
subband; different subbands can use different classification
functions.

4) Supervised Weighting:To combine the subbands’ classi-
fication decisions, we collect subbands’ individual confidence
vectorsq̂(i)s into aC×S confidence matrix̂Q(i), and define the
weighting functionSW as that taking weighted subbands’ in-
dividual confidence vectors and producing a single confidence
vector,

q̂(i) = SW(Q̂(i), Q) = Q̂(i)w.

Here, theS × 1 weight vectorw assigns a weight to each
subband according to its discriminative power;ws thus tells
us how reliable subbands is. The weight vector is found by
optimizing a supervised weighting objective function

w = argmin
ω

{
L
∑

i=1

‖q(i) − Q̂(i)ω‖}, (1)

with the constraint‖ω‖1= 1. In other words, the optimal
weight vector is the one found to be the most reliable over
labeled signals only. After weighting, we compute the global
decision as

ŷ(i) = argmax
c
q̂(i)c . (2)

Note that in this section we overloaded the symbolq̂,
hopefully without confusion;̂qc is the cth component of the
confidence vector̂q, while q̂s is the confidence vector of
subbands.
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C. Signal Processing on Graphs

With the development of social, biological, and physical net-
works, signals with complex structure are arising. Traditional
discrete signal processing is mainly suited to processing reg-
ularly sampled low-dimensional signals, such as discrete time
and space signals. To mitigate the problem, signal processing
on graphs is emerging as a tool to analyze high-dimensional
signals with irregular structure [11], [40], [41], defined on a
more general domain.

We focus here on one of the recent developments, discrete
signal processing on graphs [10]. The dataset is represented
by a graph G = (V , P ), whereV = {vi}

N
i=1 is the set of

nodesrepresenting signals andP ∈ CN×N is a graph shift
describing the relational dependencies among the nodes. The
graph shiftP is not necessarily an adjacency matrix nor does
it necessarily have a probabilistic meaning. Agraph signals
is then defined as the following map:

s : V → CN×D,

whereD is the dimension of the graph signal on each node.
A linear shift-invariant system, or, agraph filter, is defined as

H = h(P ) =

K
∑

k=0

hkP
k, (3)

with hk ∈ C, k = 0, 1, . . . , K.
Then, a graph filterH ∈ CN×N applied to a graph signal

s ∈ CN×D produces an output, which is again a graph signal,

Hs = h(P )s.

Discrete signal processing on graphs then defines a series
of standard signal processing concepts including the graph
Fourier transform, frequency, spectrum, spectral decomposi-
tion, and impulse and frequency responses [10].

D. Semi-Supervised Learning

Traditional classifiers typically fall under supervised learn-
ing, with only labeled signals to train. In many real-world
applications, however, a large number of labeled signals is
not available, which can cause overfitting. Semi-supervised
learning is a technique for training classifiers with both labeled
and unlabeled signals, which assumes that unlabeled signals
can provide distribution information to build a stronger clas-
sifier. Some well-known semi-supervised learning algorithms
include generative mixture models with expectation maximiza-
tion, co-training and graph-based approaches [9]. Generative
mixture models with expectation maximization assume that
classes produce well clustered signals, and that with large
number of unlabeled signals, the mixture components can
be identified [42]. Co-training assumes that the features are
discriminative enough so they can be split into two sets, with
each set being able to build a good classifier [43]. Graph-
based approaches assume that while the measured signals
are defined in a high-dimensional space, they exist in a
low-dimensional manifold; a graph is then constructed by
measuring the similarity of each pair of signals, and those
deemed similar are labeled as belonging to the same class [44].

We focus here on label propagation, one of graph-based
approaches. Label propagation classifies signals by under-
standing how labels propagate on a graph; two methods are
in use, diffusion functions [45] and harmonic functions [46],
[47]. Both methods work based on propagating the known
labels on the transition matrices. Diffusion functions propagate
those labels a finite number of times without any intervention.
Harmonic functions, on the other hand, correct the known
labels to the initial values after each propagation and propagate
an infinite number of times. The advantage of harmonic
functions is that the known labels keep pushing the decision
boundaries to low-density gaps. The drawback is that if the
known labels are not reliable, harmonic functions may keep
diffusing wrong information.

III. SEMI-SUPERVISEDMULTIRESOLUTION

CLASSIFICATION

Multiresolution classification analyzes data to uncover hid-
den information; in its original form, it uses supervised clas-
sification, and can thus train on labeled signals only. When
the labeled dataset is small or contains improperly labeled
signals, the classification boundary and the weights assigned
to subbands can be unreliable. Semi-supervised learning, on
the other hand, uses the entire dataset to help classification, but
works on one resolution level only. We thus propose to merge
these two concepts and gain the best of both worlds: asemi-
supervised multiresolution classifier. We stress here that this is
not a simple combination of known techniques, as there is no
known way to weigh subband decisions for unlabeled signals;
this is one of our contributions.

A. Semi-Supervised Classification

Figure 3 summarizes our proposed framework; the mul-
tiresolution decomposition and feature extraction blocks from
Figure 2 work as before. The first change is that the supervised
classification block is replaced by a semi-supervised one so we
can use both labeled and unlabeled signals to make a labeling
decision in each subband. For theith signal, the confidence
vector in thesth subband is now

q̂(i)s = SSCs(f
(i)
s , Q), (4)

whereSSCs is the semi-supervised classification function in
subbands. As for supervised classification,SSC can be chosen
from a variety of approaches; we propose a new one, adaptive
graph filter, described in Section IV.

B. Semi-Supervised Weighting

We now explain how to build a semi-supervised weighting
block, that is, how to weigh decisions from all the subbands
to get a global decision in a semi-supervised manner.

Labeled signals contribute to weighting directly by fitting
their confidence vectors from all the subbands to the ground
truth; unlabeled signals cannot do the same as they do not
have the ground truth. We could use Shannon entropy to
measure the confidence of labeling an unlabeled signal; if
the entropy is small (less uncertainty, high confidence), it is
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Fig. 3: Semi-supervised multiresolution classification. Su-
pervised classification and weighting algorithm in Figure 2
are replaced with their semi-supervised counterparts so that
unlabeled data can contribute to classification.

easy to assign a label to the signal, and vice versa. We could
thus normalize each confidence vector to sum to1 to measure
its entropy. We encounter a problem, however; for example,
let q̂(1) =

[

0.5 0.5 0
]T

and q̂(2) =
[

0.5 0.25, 0.25
]T

be confidence vectors for two signals. While we can label
q̂(2) as Class1, we clearly cannot make a decision forq̂(1).
The entropy measure, however, tells us that we can labelq̂(1)

with higher confidence (less uncertainty) because its entropy,
H(q̂(1)) = 1, is lower than that for̂q(2), H(q̂(2)) = 3/2. To
resolve this issue, we define a new uncertainty measure,

M(q̂) = H(q̂) (χd>T + λ(d)χd≤T ), (5)

where χI is the indicator function of an intervalI, d =
|q̂(1)− q̂(2)| with q̂(1), q̂(2) the first and second largest element
in q̂, respectively,T is the threshold, andλ(d) is a penalty
function that is large when the first and second largest elements
are close. In other words, when the first and second largest
elements inq̂ are far apart,d is large, the first term in (5)
takes over andM(q̂) = H(q̂); when, on the other hand, the
first and second largest elements inq̂ are close,d is small,
the second term in (5) takes over and the uncertaintyM(q̂) is
large.

We can now use this new uncertainty measure to say that
the uncertainty of thesth subband in labeling theith signal
is M(q̂

(i)
s ). Since entropy is additive, the total uncertainty of

a subband when classifying unlabeled signals is the mean
uncertainty over all the unlabeled signals for this subband,

Ms =
1

U

N
∑

i=L+1

M(q̂(i)s ).

We now define the discriminative power of thesth subband
to be the confidence

gs =
e−βMs

∑S
j=1 e

−βMj

, (6)

whereβ is the decay coefficient that controls the distribution
of the discriminant power from all the subbands. When the
uncertainty of a subband is large, the confidence is small
and the subband gets assigned a low weight, and vice versa.
Confidences from all the subbands are collected into a vector
g; note that‖g‖1= 1.

We now find the weight vector by optimizing asemi-super-
vised weighting objective function,

w = argmin
ω

{α

L
∑

i=1

‖q(i) − Q̂(i)ω‖

+ (1− α)‖ω − g‖}, (7)

Algorithm 3 Semi-supervised multiresolution classification

Input X input dataset
Y ground-truth labels forL

Output Ŷ estimated labels forU

Parameters per subbands s = 1, . . . , S
Ds multiresolution function

a
(i)
s multiresolution coefficients

Fs feature extraction function

f
(i)
s feature vector

SSCs semi-supervised classification function

q̂
(i)
s confidence vector

for all subbands
SSW semi-supervised weighting function
Q̂(i) confidence matrix
w weight vector,‖w‖1= 1
q̂(i) final confidence vector

Function SSMRC(X )

a
(i)
s = Ds(x(i)) multiresolution decomposition

f
(i)
s = Fs(a

(i)
s ) feature extraction

q̂
(i)
s = SSCs(f

(i)
s , Q) semi-supervised classification

q̂(i) = SSW(Q̂(i), Q) semi-supervised weighting

ŷ(i) = argmaxc q̂
(i)
c

return Ŷ

with the constraint‖ω‖1= 1, and whereα = L/(L + U)
is the labeling ratio. The first term in (7) represents the
contribution from all labeled signals and is a scaled version
of (1). The second term in (7) represents the contribution
from all unlabeled signals; to obtain it, we fit weights to
subbands’ confidences. We use the labeling ratio to balance
these two terms. Since this is a convex optimization problem,
it is numerically efficient to solve. As in (2), after weighting,
we compute the global decision as

ŷ(i) = argmax
c
q̂(i)c , (8)

whereq̂(i) = SW(Q̂(i), Q) = Q̂(i)w (see Algorithm 3).

IV. A DAPTIVE GRAPH FILTER

The idea of using a graph filter as a binary classifier was first
proposed in [10]. For practical applications, however, its use is
limited: First, it can only perform binary classification; then, it
trains the filter coefficients by choosing a local optimum; and
finally, it cannot classify unseen signals. Here, we propose an
adaptive graph filteras a semi-supervised classifier in (4) that
resolves these problems; we also connect this new adaptive
graph filter to diffusion maps and diffusion wavelets.

In (4), for the signalx(i) and subbands, the inputs to the
semi-supervised classifier are the feature vectorf

(i)
s and the

ground-truth matrixQ, and the output is the confidence vector
q̂
(i)
s . For simplicity, in this section we omit the subband index
s and writef (i), q̂(i); it should be understood, however, that
an adaptive graph filter is applied in each subband.

A. Graph Filtering as Semi-Supervised Classification

We start by outlining the basic idea, followed by detailed
developments. Let the input graph signal be a prior confidence
matrix formed from the ground-truth matrix and the graph
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shift be the Hermitian transpose of the transition matrix. An
adaptive graph filter is then built by combining a series of
graph shifts. The filter coefficients of the graph filter are
trained by fitting the estimated results to the known labels and
minimizing the labeling uncertainty. The output graph signal
after filtering is the posterior confidence matrix whoseith row
will be the desired confidence vectorq̂(i).

Let G = (F , P ) be a graph withF = {f (i)}Ni=1 a set of
feature vectors in the given subband for the entire dataset and
let P ∈ R

N×N be a graph shift defined as

Pi,j =
exp (−ρ(f(i),f(j))

σ )
∑N

i=1 exp (
−ρ(f(i),f(j))

σ )
, (9)

whereρ is a local distance measurement, such as theℓ2 norm
or the cosine distance, andσ is a scaling coefficient, which
controls the bandwidth. The graph shift we defined here is the
Hermitian transpose of thetransition matrixof the graph. The
graph shift thus has a probabilistic interpretation:Pi,j gives
the probability that thejth node jumps to theith node in one
step [48].

We now build a graph filter as in (3), except that, because of
the dependencies on the data in (9), this is anadaptive graph
filter,

H = h(P ) =

K
∑

k=1

hkP
k. (10)

Note that we omit the0th term since, as we will see, it does
not contribute to classification. The graph filter thus represents
the relational dependencies among signals represented via their
feature vectors.

Let the graph signal be the confidence matrix ofall the
signals on the graph, calledprior confidence matrix, that is,
the following map:

s : F → R
N×C ,

defined as

(Q̂pr)j,c =

{

1, wheny(j) = c;
0, otherwise,

or,

Q̂pr =

[

Q
0U×C

]

.

In other words, the firstL rows of Q̂ are the confidence
matrix Q representing the labeled dataset, while the other
U rows are all zeros representing the unlabeled dataset. The
prior confidence matrix thus starts with the prior knowledge
on the labeled dataset (the ground-truth matrix) and without
any knowledge on the unlabeled dataset.

By applying adaptive graph filtering now, the ground truth
propagates from the labeled dataset to unlabeled dataset; the
output graph signal, or, theposterior confidence matrix, is
obtained as

Q̂ps = HQ̂pr, (11)

where theith row of the posterior confidence matrix̂Qps is
the desired confidence vector̂q(i). Note that graph filtering
propagates the labeling information not only from the labeled

signals to the unlabeled signals, but among the labeled signals
as well, giving the mislabeled signals a chance to be corrected,
and consequently providing robustness in classification.

One issue left to address is how to choose the filter
coefficientsh1, h2, . . . hK . We rewrite (11) as

Q̂ps
(a)
=

K
∑

k=1

hkP
kQ̂pr =

K
∑

k=1

hkQ̂k, (12)

where (a) follows from (10) and̂Qk is theN ×C confidence
matrix for thekth graph shift defined aŝQk = P kQ̂pr. For
each i, the desired confidence vectorq̂(i) (ith row of Q̂ps)
is thus a weighted linear combination of corresponding rows
from each graph shift̂Qk. We can now see why we omitted
the0th term in (10); sincêQ0 = Q̂pr, it does not contribute to
propagating information from the labeled to the unlabeled data.
Fitting these estimates to the known labels and minimizing
the labeling uncertainty is identical to the semi-supervised
weighting we performed in the last section. We can thus use
the same minimization as in (7),

h∗ = argmin
h

{α

L
∑

i=1

‖q(i) − Q̂′
(i)
h‖

+ (1− α)‖h− γ‖}, (13)

whereh =
[

h1 . . . hK
]T

with the constraint||h||1= 1,

α is the labeling ratio as in (7),̂Q′
(i)

=
[

q̂
(i)
1 . . . q̂

(i)
K

]

is a C × K confidence matrix of theith signal that collects
the graph shifts’ individual confidence vectors, andγ =
[

γ1 . . . γK
]T

collects the discriminative powers of each
graph shift,

γk =
e−(β/U)

∑
N
i=L+1 M(q̂

(i)
k

)

∑K
j=1 e

−(β/U)
∑

N
i=L+1 M(q̂

(i)
j

)
,

whereM is the uncertainty measurement as in (5) andβ is
the decay coefficient as in (6).

In the first term of (13), we fit the estimated confidence
vectors to the ground-truth vectors by changing the filter
coefficients. Since the0th term always stays within the ground
truth, it trends to have a larger value and does not contribute
to the unlabeled data. This is another reason we omit the0th
term in (10).

B. Regression: Handling Unseen Data

As defined, adaptive graph filtering can only handle signals
in the given dataset; should an unseen signal appear, the graph
would need to be rebuilt and the filter coefficients retrained,
at a significant computational cost. To handle unseen signals,
we introduce regression.

We assume that each signal is randomly sampled from
some continuous distribution and that the signals with the
same label originate from the same distribution (recall that
signals here are subband feature vectors). If we use the given
signals and their posterior confidence vectorsq̂(i) to estimate
the distributions, we can label those unseen signals originating
from these distributions. The task is thus to design a regression
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Fig. 4: Adaptive graph filter. Labeled and unlabeled signals
arefed into the graph filtering block that outputs the estimated
labels for unlabeled signals. Based on existing labeled and
unlabeled signals, graph filtering generates the smoothing
matrix for the regression block. Unseen signals are fed into the
regression block that outputs the estimated labels for unseen
signals.

function to map the unseen signals to their posterior confidence
vectors.

Given the subband feature vectorsF = {f (i)}Ni=1 and their
posterior confidence vectorŝQps, for a batch of unseen signals
Fus = {f (i)}N+M

i=N+1, the posterior confidence matrix for the
unseen signals is

Q̂us = LQ̂ps, (14)

whereL ∈ R
M×N is a generic form of the smoothing matrix

determined by some regression technique, such as polynomial
regression, spline regression or kernel regression [49]. For
the regularized reproducing kernel regression, a valid kernel
function k(f, f ′) is first chosen to measure the inner product
of f and f ′ in a higher-dimensional space, and then, the
smoothing matrix is defined as

L = K ′(K + λIN )−1,

whereλ is a regularization parameter,IN is anN×N identity
matrix, K ′

i,j = k(f (N+i), f (j)), i = 1, 2, . . . , M , j =

1, 2, . . . , N , andKi,j = k(f (i), f (j)), i, j = 1, 2, . . . , N .
The smoothing matrix calculates the relational dependencies
between the unseen and given signals. Closer dependencies
lead to higher values in the smoothing matrix. Because of this,
the generic regression model predicts the posterior confidence
vector of the new signal by weighing the posterior confidence
vectors of the given signals locally, which means that the
signals close by have similar posterior confidence vectors.

Note that the forms of one step of graph filtering (11)
and one step of regression (14) are similar. While both of
these assume that similar signals have similar confidence
vectors, their goals are different: the graph filtering step builds
the relationship between unlabeled and labeled signals and
produces labels from limited label information, while the
regression step builds the relationship among the signals with
the same label and connects unseen signals to their confidence

Algorithm 4 Adaptive graph filter

Input F input dataset
Q̂pr prior confidence matrix

Output Q̂ps posterior confidence matrix

Parameters Pi,j graph shift
ρ local distance
σ scaling coefficient
hk filter coefficients

Function AGF(F , Q̂pr)
Pi,j = (9) graph shift construction
h = (13) filter coefficient optimization
for k = 1 : K do diffusion

Q̂k = P kQ̂pr

Q̂ps =
∑K

k=1 hkQ̂k weighting
return Q̂ps

vectors. Therefore, adding regression to graph filtering creates
an adaptive graph filter that not only propagates the labeling
information within a given dataset, but across unseen signals
as well (see Figure 4).

Adaptive graph filter serves as a semi-supervised plugin
method for classification. The traditional plugin methods es-
timate the unknown quantities in the Bayes’ rule and plug
them in for classification [50]; in the other words, they are
equivalent to the regression block of adaptive graph filter. For
instance, to label theith signal, we first estimate the confidence
vectorq̂(i) by using some regression techniques on the labeled
dataset and then pluĝq(i) in (2) to do classification. Without a
large number of labeled signals, however, the traditional plugin
methods fail to do robust semi-supervised classification [51].
Adaptive graph filter solves this problem by producing labels
for unlabeled signals in the filtering step, such that both labeled
and unlabeled signals contribute to the smooth matrix in the
regression step.

C. Cost Analysis

The adaptive graph filter contains two steps: filtering and
regression. In the filtering step, the computation involves the
graph shift construction with the cost ofO((N − 1)N/2 +
N + N2) = O((3N2 + N)/2), the diffusion operation with
the cost ofO(CKN2), and the weighting operation with the
cost ofO((K − 1)N2), for a total cost ofO(((C + 1)K +
1/2)N2 + N/2). In the regression step, the bulk of the cost
comes from the construction of the smooth matrix and the
inverse it involves with the cost ofO((N − 1)N/2 + N +
N3 + MN + MN2) and the matrix multiplication in (14)
with the cost ofO(MCN), for a total cost ofO(N3 + (M +
1/2)N2 + (1/2 +M(C + 1))N .

D. Relation to Diffusion Maps

We now analyze the adaptive graph filter by connecting it to
diffusion maps and show that it reconstructs a robust diffusion
map with more flexibility.

1) Diffusion Maps:The diffusion maps are coordinates that
provide efficient geometric descriptions of signals and are built
based on the singular value decomposition of the transition
matrix.
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Let A be the adjacency matrix of a graph,D the diagonal
matrix whoseith element isDi,i =

∑

j Ai,j andT = D−1A
the transition matrix. Recall that each element ofT measures
the likelihood of getting from one data point to another in
one step; each element ofT k measures the likelihood of
getting from one data point to another ink steps. The diffusion
distance between two signalsx, y in stepk is then defined as

Dk(x, y)
2 = ||t

(x)
k − t

(y)
k ||2D−1 (15)

= (t
(x)
k − t

(y)
k )TD−1(t

(x)
k − t

(y)
k ),

wheret(x)k andt(y)k arexth andyth rows ofT k, respectively.
Since the diffusion distance takes into account all paths of
length k from x to y, it is robust to noise perturbation and
outliers. Note that the diffusion distance can also be calculated
using theℓ2 norm.

Since the transition matrix is asymmetric, we introduce a
normalized transition matrix̂T = D

1
2TD− 1

2 , which, since
symmetric, can be factored as

T̂ = V ΛV ∗ =

N
∑

i=1

viλiv
∗
i ,

whereV =
[

v1 v2 . . . vN
]

is an orthogonal matrix and
λi are the singular values; moreover,1 = λ1 ≥ λ2 ≥ . . . ≥
λN ≥ 0. We then decompose the transition matrix as

T k = ΨΛkΦ∗ =

N
∑

i=1

ψiλ
k
i φ

∗
i , (16)

whereΨ =
[

ψ1 ψ2 . . . ψN

]

= D− 1
2V , and Φ =

[

φ1 φ2 . . . φN
]

= D
1
2 V . Note thatT̂ andT share the

same eigenvalues. The underlying diffusion map for stepk
and nodex is now defined as

Y
(x)
k =

[

λk1ψ1,x λk2ψ2,x . . . λkNψN,x

]T
. (17)

If we define the diffusion space to be the space spanned by
the columns ofΦ, then, the diffusion mapY (x)

k gives the
coordinates ofx diffusedk times in that space.

Using diffusion maps, the diffusion distance is simply

Dk(x, y)
2 (a)

= (t
(x)
k − t

(y)
k )TD−1(t

(x)
k − t

(y)
k ),

(b)
=

[

∑N
i=1 λ

k
i (ψi,x − ψi,y)φ

∗
i

]

D−1

[

∑N
i=j λ

k
j (ψj,x − ψj,y)φj

]

=
[

∑N
i=1 λ

k
i (ψi,x − ψi,y)v

∗
iD

− 1
2

]

D−1

[

∑N
i=j λ

k
j (ψj,x − ψj,y)D

1
2 vj

]

(c)
=

N
∑

i=1

[

λki (ψi,x − ψi,y)
]2

= ||Y
(x)
k − Y

(y)
k ||22,

where (a) follows from (15); (b) from (16); and (c) from
the orthogonality ofV . Thus, by varyingk = 0, 1, . . ., the
diffusion maps allow us to find an alternate representation that
might better separate the data, for example.

2) Relation to the Adaptive Graph Filter:We now show
how, by using the adaptive graph filter, we construct diffusion
maps that allow for more flexibility. Recall that our adaptive
graph filter in (10) uses the graph shiftP that is a Hermitian
transpose of the transition matrixT . Thus, applying (16) to
(10) , we get

h(P ) =

K
∑

k=1

hkP
k =

K
∑

k=1

hk(T
∗)k =

K
∑

k=1

hk(T
k)∗

=

K
∑

k=1

hk(ΨΛkΦ∗)∗ =

K
∑

k=1

hkΦΛ
kΨ∗

= Φ

(

K
∑

k=1

hkΛ
k

)

Ψ∗ = Φh(Λ)Ψ∗, (18)

with h(Λ) = diag(
∑K

k=1 hkλ
k
1 , . . . ,

∑K
k=1 hkλ

k
N ).

If we define the diffusion space to be the space spanned by
the columns ofΨ, then, we define a diffusion map to be

Y
(x)
h =

[

h(Λ)1,1φ1,x . . . h(Λ)N,NφN,x

]T
. (19)

Thus, the construction of an adaptive graph filter allows for
continuous change of the coordinates in the diffusion space,
providing flexibility in finding the best representation in a data-
adapted fashion; this adaptivity is reflected by subscripth in
Y

(x)
h . This is in contrast to only discrete changes allowed by

(17).
We illustrate the above discussion with an example. Let

λ1 = 1, λ2 = 0.5, Y (x)
0 =

[

1 1
]T

, Y (y)
0 =

[

2 1
]T

, and

Y
(z)
0 =

[

1 2.4
]T

. The distance betweenx andy in this step
is D0(x, y) = 1, smaller than the distance betweenx and z,
D0(x, z) = 1.4. Diffusing once, we getY (x)

1 =
[

1 0.5
]T

,

Y
(y)
1 =

[

2 0.5
]T

, and Y (z)
1 =

[

1 1.2
]T

. The distance
betweenx andy in this step isD1(x, y) = 1, larger than the
distance betweenx and z, D1(x, z) = 0.7. In other words,
by changing the powerk, distances change in the diffusion
space. Sincek can only be an integer, it is not possible, for
example, to make the distances betweenx and y, andx and
z be the same. By using the adaptive graph filter, however,
we can find the optimal filter coefficients to match such a
requirement using (13).

E. Relation to Diffusion Wavelets

We now analyze the adaptive graph filter by connecting it to
diffusion wavelets and show that it performs multiresolution
classification on graphs.

1) Diffusion Wavelets:Diffusion wavelets are a multiscale
framework to analyze signals with complex structures [13].
They can be seen as an extension of the classical wavelet
theory, where, the diffusion wavelet basis is learned from the
geometry of the signal structure in a data-adapted fashion.
The diffusion wavelet basis is constructed by dilation using the
dyadic powers of the transition matrix, the idea being that they
propagate local relationships to global relationships throughout
the graph.

Given a graph, at thejth resolution level, we haveT 2j , as
the transition matrix,j = 1, 2, . . .. Since the second singular
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value of the transition matrix is less than1 to keep the graph
connected, only the first singular value is1. Consequently, if
the transition matrix is raised to a high power, all the singular
values disappear except for the first one,

λ2
j

i → 0, i = 2, 3, . . . , N as j → ∞.

When j = 1, the transition matrixT measures local pairwise
similarities; increasing the powerj gradually decreases the
rank of the transition matrixT 2j and causes local information
of the graph to be missed since the resolution on the graph
changes from finest to the coarsest. Thus, by changingj, we
can both perform a multiresolution analysis as well as do it
in a computationally efficient manner.

2) Relation to the Adaptive Graph Filter:The adaptive
graph filter in (10) is formed as a linear combination of graph
shiftsP raised to powerk. Whenk is large,P k become a low-
rank matrix describing the global information of the graph,
just asT 2j does for diffusion wavelets. Eachk corresponds to
a different resolution on the graph, and thus, adaptive graph
filter actually performs multiresolution classification on the
graph. It weighs the classification results from each resolution
to produce the global result. The filter coefficients represent
the discriminative power of each resolution. This also explains
why the objective functions to optimize the filter coefficients
in (7) and the weights of each subband in (13) are the same.

V. EXPERIMENTAL RESULTS

In this section, we validate the proposed framework on
a real-world classification problem, indirect bridge structural
health monitoring, and show that it performs remarkably better
than previous approaches.

A. Dataset

To study the bridge behavior under various conditions
comprehensively, a lab-scale bridge-vehicle dynamic system
was built. Accelerometers were installed on a vehicle that
moves across the bridge; acceleration signals were then col-
lected from those accelerometers. We collected30 acceleration
signals for each of13 different bridge conditions,8 different
speeds and2 vehicles with different weights, for a total of6240
acceleration signals [19]. The13 bridge conditions include one
pristine condition and4 different damage severities for each
of 3 different damage proxy scenarios.

B. Experimental Setup

Given a specific vehicle driven at a specific speed, we want
to classify 13 bridge conditions, in particular, with a low
labeling ratio. We consider16 vehicle-speed combinations for
each of which there are30 acceleration signals for each of
the13 scenarios; the final accuracy is the average over the13
scenarios; the baseline accuracy is thus100/13 = 7.7%.

We choose a Coiflet filter bank [52] with4 levels [21] in
the multiresolution block, principal component analysis [20] in
the feature extraction block, radius kernel support vector ma-
chine [53] in the supervised classification block, and adaptive
graph filtering in the semi-supervised classification block. We

Experimental setup

dataset
V vehicles 2
S speeds 8

damage scenarios 13
signals/scenario 30

multiresolution decomposition
D Coiflet filter bank 4 levels
S number of subbands 31

feature extractions
F principal component analysis
classification
SC kernel support vector machine
SSC adaptive graph filter
ρ local distance cosine distance
σ scaling coefficient (1/N2)

∑
i,j ρ(f

(i) , f(j))
β decay coefficient 1
K length of graph filter 30

weighting
T threshold 0.02
λ(d) penalty function 1 + 5((d/T ) − 1)2

TABLE II: Parameters used in the experiments.

construct the graph by choosingρ as the cosine distance [54]
and σ = (1/N2)

∑

i,j ρ(f
(i), (f (j))) in (9). The length of

the adaptive graph filter isK = 30. In the semi-supervised
weighting function, we choose the penalty thresholdT = 0.02
and the penalty functionλ(d) = 1 + 5(d/T − 1)2 in (5). The
decay coefficientβ = 1 is chosen to minimize (7) and (13).
We performed a30-fold cross-validation. Table II summarizes
all the parameters at a glance.

We compare our method, semi-supervised multiresolution
classification with adaptive graph filtering, against:

• Generic classificationwith kernel support vector ma-
chine, diffusion functions, harmonic functions, and adap-
tive graph filtering.

• Supervised multiresolution classificationwith kernel sup-
port vector machine.

• Semi-supervised multiresolution classificationwith diffu-
sion functions, harmonic functions, and adaptive graph
filtering.

We use the following shorthands in figures and tables: S for su-
pervised (if with another acronym) or speed (if without another
acronym), SS for semi-supervised, MRC for multiresolution
classification, SVM for kernel support vector machine, DF
for diffusion functions, HF for harmonic functions, AGF for
adaptive graph filtering, and V for vehicle.

C. Classification Results

We validate our method from three standpoints: (1) the
performance of the semi-supervised multiresolution classifi-
cation framework; (2) the ability of adaptive graph filtering
to handle mislabeled signals; and (3) the ability of adaptive
graph filtering to handle unseen signals.

1) Semi-Supervised Multiresolution Classification:We val-
idate the proposed framework, semi-supervised multiresolution
classification, by comparing it to generic classification and
supervised multiresolution classification with a low labeling
ratio of 10% (see Table III).
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V S Generic SMRC SSMRC
SVM DF HF AGF SVM DF HF AGF

1 1 57.97 83.70 88.92 87.98 81.19 99.63 99.80 99.83
2 70.42 85.78 90.38 89.55 84.71 99.83 99.98 99.99
3 74.29 86.25 90.67 89.91 84.59 99.11 99.40 99.38
4 74.82 88.08 94.79 93.87 80.29 99.89 99.93 99.98
5 70.68 74.87 78.92 77.64 72.35 93.76 96.13 94.52
6 67.13 82.43 86.00 85.24 69.72 91.54 93.47 93.43
7 59.48 65.31 66.05 66.23 59.75 77.44 78.79 78.74
8 56.53 66.52 67.58 67.11 56.63 75.37 77.93 77.23

2 1 49.75 78.17 82.28 80.99 71.69 85.36 84.63 85.12
2 53.64 67.30 71.38 70.32 60.69 80.19 80.51 80.59
3 67.96 82.50 87.84 86.09 74.94 95.12 94.62 94.81
4 61.52 79.57 82.85 82.86 65.27 86.65 86.44 87.34
5 62.75 77.92 82.15 81.22 66.42 88.86 88.34 88.72
6 66.89 80.17 81.65 81.73 69.75 84.08 83.61 84.18
7 65.09 82.87 85.19 85.48 70.59 89.15 89.51 89.66
8 48.57 80.32 83.01 82.57 53.67 92.03 93.62 93.31

TABLE III: Accuracy comparison of Vehicles (V)1 and2, with Speeds (S)1, 2, . . . , 8, and labeling ratio of10%.

(a) Vehicle1. (b) Vehicle 2.

Fig. 5: Trend 1: Multiresolution framework improves classi-
fication accuracy. Comparison of supervised classifiers.

We detect three trends, the first two of which validate each
component of the framework (multiresolution classification
and semi-supervised learning), while the third validates the
entire framework: (1) Multiresolution framework improves
classification accuracy: supervised multiresolution classifier
performs better than the corresponding supervised generic
classifier; and each semi-supervised multiresolution classifier
(DF, HF, AGF) performs better than the corresponding semi-
supervised generic classifier. (2) Semi-supervised learning
improves classification accuracy: each semi-supervised generic
classifier (DF, HF, AGF) performs better than the supervised
generic classifier; and each semi-supervised multiresolution
classifier performs better than the supervised multiresolution
classifier. (3) Multiresolution framework with semi-supervised
learning improves classification accuracy over the supervised
generic classifier by∼ 30%.

We further validate these trends under different labeling
ratios. Figures 5–8 show the dependence of classification
accuracy on the labeling ratio for2 vehicles averaged across
8 speeds. Figures 5 and 6 validate Trend 1 for supervised
(SVM) and semi-supervised (AGF) classifiers. In each case
and for both vehicles, multiresolution framework improves

(a) Vehicle1. (b) Vehicle 2.

Fig. 6: Trend 1: Multiresolution framework improves classi-
fication accuracy. Comparison of semi-supervised classifiers.

classification accuracy across all labeling ratios.
Figure 7 validates Trend 2 for supervised (SVM) and

semi-supervised (AGF) multiresolution classifiers. For both
vehicles, semi-supervised learning improves classification ac-
curacy across all labeling ratios. Moreover, as the labeling
ratio decreases, accuracy drops sharply for multiresolution-
based SVM; performance of the multiresolution-based adap-
tive graph filter stays relatively flat, however, even at very low
labeling ratios.

Figure 8 validates Trend 3 for semi-supervised (AGF) mul-
tiresolution classifier and generic supervised classifier (SVM).
For both vehicles, semi-supervised multiresolution classifier
with adaptive graph filtering dramatically improves classifica-
tion accuracy across all labeling ratios.

2) Ability of Adaptive Graph Filtering to Handle Misla-
beled Signals:In real-world problems, some of the labeled
signals could be unreliable for different reasons, for example,
negligence or uncertainty. As mentioned in Section IV-A,
one of the advantages of using adaptive graph filtering is
to provide robustness to mislabeling. To validate that, we
randomly mislabel a fraction of labeled signals, feed them
into the classifiers together with correctly labeled signals,
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(a) Vehicle1. (b) Vehicle 2.

Fig. 7: Trend 2: Semi-supervised learning improves classifi-
cation accuracy. Comparison of multiresolution classifiers.

V S Generic SSMRC
DF HF AGF DF HF AGF

1 1 83.88 85.15 88.53 95.92 96.60 99.39
2 87.15 87.76 90.84 97.72 98.09 99.79
3 87.28 88.77 91.03 97.47 97.71 99.40
4 86.97 88.99 93.45 96.93 96.99 99.52
5 74.52 73.99 77.72 94.41 95.28 95.74
6 83.05 84.08 87.54 93.21 93.94 95.75
7 63.99 63.45 66.08 78.37 79.21 80.06
8 66.92 67.15 68.14 78.38 79.59 80.44

2 1 77.38 79.28 81.88 83.53 83.39 85.68
2 66.78 67.65 69.98 77.97 78.32 79.86
3 82.09 83.80 86.72 94.13 93.61 95.07
4 79.99 81.00 84.56 86.67 86.61 88.31
5 79.42 80.40 83.20 87.39 87.61 89.01
6 80.40 80.97 83.34 84.25 83.43 84.69
7 81.96 82.34 86.03 88.43 89.01 89.85
8 79.59 81.47 83.31 92.31 92.94 94.40

TABLE IV: Robustness to mislabeled signals: accuracy com-
parison of Vehicles (V)1 and2, with Speeds (S)1, 2, . . . , 8,
with labeling ratio of20% and misslabeling ratio of15.38%.

and compare the fault tolerances of the three semi-supervised
classifiers. Tables IV and V show results where20% of signals
are labeled, with15.38% and33.33% of these labeled signals
mislabeled, respectively. The three trends from before still
hold: multiresolution framework on its own, semi-supervised
learning on its own, and the two together, all improve classi-
fication accuracy. Among the semi-supervised multiresolution
classifiers, adaptive graph filtering performs the best in each
case. Moreover, as the ratio of mislabeled signals increases
from 15.38% to 33.33%, the performance of adaptive graph
filtering is relatively unaffected, while the performance of the
other two semi-supervised classifiers, diffusion functions and
harmonic functions, decreases dramatically. We thus conclude
that the semi-supervised multiresolution classification using
adaptive graph filtering is robust to mislabeled signals.

3) Ability of Adaptive Graph Filtering to Handle Unseen
Signals: Finally, to validate the claim from Section IV-B that
using regression allows us to handle unseen signals, we keep
a portion of signals as unseen signals. For each vehicle and
speed, we have13 damage scenarios with30 signals for each
for a total of 390 available signals. We assignM = 65 of

(a) Vehicle1. (b) Vehicle 2.

Fig. 8: Trend 3: Multiresolution framework with semi-
supervised learning improves classification accuracy.

V S Generic SSMRC
DF HF AGF DF HF AGF

1 1 72.55 73.41 81.99 87.16 87.43 97.20
2 75.84 76.18 85.16 89.37 89.96 98.14
3 79.36 79.40 87.17 90.33 90.73 97.44
4 77.47 77.03 89.15 88.50 88.83 97.90
5 66.32 62.75 72.87 86.78 85.67 90.08
6 74.44 72.98 81.92 86.45 85.35 90.98
7 57.70 55.89 62.02 72.43 72.69 76.06
8 60.14 59.12 63.88 71.29 71.64 75.26

2 1 66.76 68.00 76.29 74.46 74.50 81.90
2 57.62 57.50 63.41 71.08 70.85 75.94
3 73.54 73.69 82.47 87.25 87.18 93.19
4 71.27 70.05 79.78 78.49 78.70 84.78
5 70.76 69.87 78.66 79.95 79.67 85.80
6 72.39 71.84 80.41 77.18 77.13 82.55
7 74.39 73.82 82.53 81.45 82.01 87.04
8 72.88 71.12 80.04 85.82 86.29 92.19

TABLE V: Robustness to mislabeled signals: accuracy com-
parison of Vehicles (V)1 and2, with Speeds (S)1, 2, . . . , 8,
with labeling ratio of20% and misslabeling ratio of33.33%.

these to be unseen, leaving us withN = 325 total signals, out
of which we labelL = 13. We thus have4% (13/325) labeled
and20% (65/325) unseen signals. Table VI shows results for
both the generic classifier and semi-supervised multiresolution
classifiers with adaptive graph filtering. In each case, we
compare accuracies ofU = 312 unlabeled signals as well as
of M = 65 unseen signals. Although the unseen signals never
appear in the filtering stage, classification accuracy is close to
that of unlabeled signals. If the signal set is sufficiently large,
the adaptive graph filter learns the distribution of signals from
both labeled and unlabeled signals, which it then uses for the
unseen signals.

VI. CONCLUSIONS ANDFUTURE WORK

We presented a novel classification framework combining
multiresolution classification with semi-supervised learning;
adaptive graph filtering for semi-supervised classification that
allows for classifying unlabeled as well as unseen signals
and for correcting mislabeled signals; and solution to indirect
bridge structural health monitoring.
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V S Generic-AGF SSMRC-AGF
Unlabeled Unseen Unlabeled Unseen

1 1 76.79 74.21 99.19 96.92
2 80.34 74.72 99.26 96.77
3 83.84 79.18 97.38 94.41
4 85.67 84.51 99.70 98.77
5 67.44 73.85 82.81 80.92
6 75.20 74.97 85.35 80.97
7 62.02 62.72 72.97 71.13
8 57.97 58.05 67.39 66.97

2 1 75.63 75.38 81.99 82.41
2 56.77 57.64 76.05 76.41
3 77.13 77.08 93.25 92.00
4 71.57 72.62 80.49 81.13
5 69.31 68.77 83.73 82.62
6 73.27 74.05 78.13 78.46
7 77.98 78.10 83.60 83.59
8 74.69 77.64 86.82 87.64

TABLE VI: Robustness to unseen signals: accuracy compar-
ison of Vehicles (V) 1 and 2, with Speeds (S)1, 2, . . . , 8,
labeling ratio of4% and ratio of unseen signals of20%.

The proposed framework builds upon supervised multires-
olution classification, which extracts hidden features in local-
ized time-frequency subbands, and semi-supervised learning,
which uses both labeled and unlabeled signals. We link the two
via a novel weighting algorithm that combines information
from all the subbands of all the signals to make a global
decision in a semi-supervised fashion. We propose a novel
semi-supervised classifier, adaptive graph filter, also, the first
real application of signal processing on graphs. We further
connect it to diffusion maps and diffusion wavelets and show
that it performs multiresolution classification on graphs.

We validate the proposed framework on the task of indi-
rect bridge structural health monitoring and show that: (1)
multiresolution framework on its own, (2) semi-supervised
learning on its own, and (3) the two together, all improve
classification accuracy. Furthermore, we show that adaptive
graph filtering has the ability to handle unlabeled, mislabeled
as well as unseen signals.

Some near-future tasks are to use more features in each
time-frequency subband, prune wavelet packet tree to achieve
faster implementation and test the framework on real-world
bridge-vehicle dynamic system.

VII. R EPRODUCIBLE RESEARCH

We follow the principles of reproducible research. To that
end, we created a reproducible research page available to
reviewers [55]. Should the paper get accepted, that link will
become live.
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Minden, and J. Kovačević, “Towards an image analysis toolbox for
high-throughput Drosophila embryo RNAi screens,” inProc. IEEE Int.
Symp. Biomed. Imag., Arlington, VA, Apr. 2007, pp. 288–291.

[7] A. Chebira, J. A. Ozolek, C. A. Castro, W. G. Jenkinson, M. Gore,
R. Bhagavatula, I. Khaimovich, S. E. Ormon, C. S. Navara,
M. Sukhwani, K. E. Orwig, A. Ben-Yehudah, G. Schatten, G. K.
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and rotation invariant texture classification with local binary patterns,”
IEEE Trans. Pattern Anal. Mach. Intell., vol. 24, pp. 971–987, 2002.

[34] T. Ahonen, A. Hadid, and M. Pietikäinen, “Face description with local
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ABSTRACT

We propose a novel recovery algorithm for signals with com-
plex, irregular structure that is commonly represented by
graphs. Our approach is a generalization of the signal inpaint-
ing technique from classical signal processing. We formulate
corresponding minimization problems and demonstrate that
in many cases they have closed-form solutions. We discuss
a relation of the proposed approach to regression, provide an
upper bound on the error for our algorithm and compare the
proposed technique with other existing algorithms on real-
world datasets.

Index Terms— Signal processing on graphs, signal in-
painting, total variation, semi-supervised learning.

1. INTRODUCTION

The problem of collecting, processing and analyzing data ob-
tained from or represented by networks has been receiving a
constantly increasing interest due to the abundance of such
data in various research fields. An integral part of solving this
problem is the development of new models and techniques that
can be applied to datasets with complex irregular structures.

Recently, a theoretical framework called signal processing
on graphs has emerged as a new approach to analyze signals
with irregular structure [1, 2, 3, 4]. Its key idea is to repre-
sent the structure of a signal with a graph by associating signal
coefficients with graph nodes and analyzing graph signals by
using appropriately defined signal processing techniques, such
as Fourier transform, filtering, and wavelets.

In this paper, we study the problem of signal recovery, that
is, reconstruction or estimation of signal coefficients that are
missing, unmeasurable, or corrupted by noise, a task often re-
ferred to as signal inpainting [5, 6, 7].

Previous work on this topic has primarily come when
missing signal coefficients are unknown labels that need to
be learned [8, 9]. Existing approaches are often based on

This material is based upon work supported by the National Science
Foundation under Grant no. 1130616 and 1017278, and by a National Sci-
ence Foundation Graduate Research Fellowship under Grant No. 0946825.
This research is also supported by a University Transportation Center grant
(DTRT12-G-UTC11) from the US Department of Transportation and CMU
Carnegie Institute of Technology Infrastructure Award.

the graph Laplacian operator and take roots in spectral graph
theory [10]. From the perspective of signal processing, they
seek to minimize a total variation function based on the graph
Laplacian, which measures how much signal coefficients dif-
fer from other relevant coefficients. A major limitation of the
graph Laplacian based method is its restriction to undirected
graphs with real, non-negative edge weights.

We propose a novel approach to graph signal inpainting. It
seeks to minimizes a total variation function that is based on a
graph shift, which is a fundamental signal processing concept
that can be defined for signals represented by any graph [1, 2].
As a result, our proposed technique is applicable to a much
broader class of graphs. In this paper, we offer two formula-
tions of the signal inpainting on graphs as minimization prob-
lems and demonstrate that in many cases these problems have
exact closed-form solutions. We also discuss a connection of
our approach to regression on graphs, derive an upper bound
on the signal inpainting error produced by our technique, and
demonstrate on real-world datasets that our approach can lead
to better signal recovery and signal classification than other
existing approaches.

2. DISCRETE SIGNAL PROCESSING ON GRAPHS

In this section, we briefly review relevant concepts of discrete
signal processing on graphs; a thorough introduction can be
found in [1, 2]. Discrete signal processing on graphs is a theo-
retical framework that generalizes classical discrete signal pro-
cessing from regular domains, such as lines and rectangular
lattices, to irregular structures that are commonly described
by graphs.

Consider a graph G = (V,A), where V = {vn}Nn=1 is the
set of nodes and A ∈ CN×N is a graph shift, that is, an ele-
mentary filtering operation that replaces a signal coefficient at
a node with a weighted linear combination of coefficients at
its neighboring nodes. The weights Ai,j characterize the rela-
tion between the ith node and the jth node. For example, they
can quantify similarities and dependencies between nodes, or
indicate communication patterns in networks. The graph shift
operation is written as

s→ A s.
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where a graph signal s is defined as a mapping

s : V → Cn,

that assigns a signal coefficient sn ∈ C to the graph node vn.
A concept often used in signal processing is that of

smoothness. Smoothness of graph signals is expressed by
a graph total variation function

TVA(s) =

∣∣∣∣∣∣∣∣s− 1

|λmax|
A s

∣∣∣∣∣∣∣∣2
2

, (1)

where λmax(A) denote the eigenvalue of A with the largest
magnitude.1

3. SIGNAL INPAINTING ON GRAPHS

Signal inpainting is a process of recovering missing or cor-
rupted signal coefficients from a known part of the signal. In
discrete-time signal processing, a signal, such as a time series
or a digital image, is typically assumed to be smooth, and the
missing part is recovered through regularization or lowpass fil-
tering [5, 6, 7].

3.1. Problem formulation

The graph total variation (1) allows us to generalize the in-
painting process from lines and rectangular lattices to arbitrary
graphs. We work with graph signals of the form

s =

[
sM
sU

]
, (2)

where sM ∈ CM is the known part of the signal and sU ∈
CN−M is the unknown part (without loss of generality, we
assume that the known coefficients s1, . . . , sM correspond to
the first M graph nodes v1, . . . , vM ; this arrangement can al-
ways be achieved by reordering nodes). Assuming that (2) is
a smooth signal, that is, its variation is small, we recover the
missing part sU by solving the following minimization prob-
lem:

s∗ = argmin TVA(ŝ), (3a)
subject to ||̂sM − sM||22 ≤ ε2. (3b)

The condition (3b) controls how well the known part of the
signal is preserved.

3.2. Graph total variation regularization

Alternatively, the graph signal inpainting (3) can be formu-
lated as an unconstrained problem,

s∗ = argmin ||̂sM − sM||22 + λTVA(ŝ), (4)
1We omit the normalization factor 1/||s||22 in (1) that was used in the orig-

inal definition in [2], since signal inpainting algorithms we consider in this
paper are not affected by this factor.

where the tuning parameter λ controls the trade-off between
two parts of the objective function. Equation (4) is called
as graph total variation regularization (GTVR). Small values
of λ emphasize fitting the estimates to the known measure-
ments more than the smoothness on the graph; large values of
λ lead to smoother solutions of (4).

Note that (4) is a convex quadratic problem and has a
closed-form solution. For many values of ε in (3) we can find
a corresponding value of λ for which (4) yields an equivalent
solution.

We now derive a closed-form solution to (4). For nota-
tional simplicity, assume that matrix A has been normalized
to satisfy λmax(A) = 1, so we can write the variation func-
tion (1) as

TVA(s) = ||s−A s||22.
= sH(I−A)H(I−A)s, (5)

where I is the identity matrix. The objective function in (4) is
thus a linear combination of two quadratic functions of ŝ. The
derivative of the objective function in (4) is:

∂

∂ŝ

(
||̂sM − sM||22 + λTVA(ŝ)

)
=

∂

∂ŝ

(
(ŝ− s)H

[
IM 0
0 0

]
(ŝ− s) + λŝH(I−A)H(I−A)ŝ

)
= 2

[
IM 0
0 0

]
(ŝ− s) + 2λ(I−A)H(I−A)ŝ. (6)

By setting (6) to zero, we then obtain the closed-form solution
as follows:

s∗ =

([
IM 0
0 0

]
+ λ(I−A)H(I−A)

)−1 [
sM
0

]
. (7)

3.3. Graph total variation minimization

When the known part of the signal needs to be preserved intact,
we must solve (3) directly for ε = 0,

s∗ = argmin TVA(ŝ), (8a)
subject to ŝM = sM. (8b)

Equation (8) is called as graph total variation minimization
(GTVM). Denote by Ã = (I−A)H(I−A). By writing Ã in a
block form as

Ã =

[
ÃMM ÃMU
ÃUM ÃUU

]
, (9)

we can rewrite the objective function in (8) as

TVA(ŝ) = ŝHÃŝ

=
[
ŝHM ŝHU

] [ÃMM ÃMU
ÃUM ÃUU

] [
ŝHM ŝHU

]
= ŝHMÃMMŝM + ŝHU ÃUMŝM (10)

+ ŝHMÃMU ŝU + ŝHU ÃUU ŝU .
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Since ŝM = sM, as specified by (8b), the minimum of the ob-
jective function (10) is found by setting its derivative to zero,
which yields the closed-form solution

ŝU = −Ã
−1
UU ÃUMsM. (11)

4. DISCUSSION

We now discuss several properties of our proposed signal in-
painting algorithms.

4.1. Connection to Graph-based Regression

We can construct a graph to represent a dataset and a set of la-
bels by associating each dataset element with a node and view-
ing labels as a signal on this graph. In this setting, graph sig-
nal inpainting becomes analogous to a regression, since it es-
timates a regression function that assigns a label to each node.

In general, the graph-based regression has the form [11, 9,
8]

s∗ = argmin ||̂sM − sM||2 + λŝH G ŝ, (12)

where G is a smoothing matrix that can be defined in differ-
ent ways depending on the context. For instance, if G is the
graph Laplacian matrix, then (12) solves Laplacian regulariza-
tion [9]. If, in addition, ŝM = sM, then the minimization (12)
is based on the Laplacian harmonic functions [8]. Since our
approach (4) uses the total variation defined by the graph shift,
we use G = (I−A)H(I−A) in (12).

4.2. Error Analysis

We now derive an upper bound on the estimation error of graph
signal inpainting algorithm (3).

Let s0 be the true graph signal that we are trying to esti-
mate by signal inpainting. Assume that TVA (s0) = η2 and
s0 satisfies (3b), so that ||s0M− sM||22 ≤ ε2. Also, write A in
a block form similarly to (9).

Lemma 1. The estimation error e = s0 − s∗ of the signal
inpainting algorithm (3) is bounded by the unmeasured part
of the signal as

||e||2 ≤ q

2
||eU ||2 + p|ε|+ |η|, (13)

where

p =

∣∣∣∣∣∣∣∣[IMM+AMM
AUM

]∣∣∣∣∣∣∣∣
2

, q =

∣∣∣∣∣∣∣∣[ AMU
IUU +AUU

]∣∣∣∣∣∣∣∣
2

,

and || · ||2 for matrices denotes the spectral norm.

Proof. Since ||eM||2 = ||s0M − s∗M||2 ≤ ||s0M − sM||2 +
||sM − s∗M||2 = 2|ε|, we obtain

||(I+A)e||2 =

∣∣∣∣∣∣∣∣[IMM+AMM AMU
AUM IUU +AUU

] [
eM
eU

]∣∣∣∣∣∣∣∣
2

≤
∣∣∣∣∣∣∣∣[IMM+AMM

AUM

]∣∣∣∣∣∣∣∣
2

· ||eM||2

+

∣∣∣∣∣∣∣∣[ AMU
IUU +AUU

]∣∣∣∣∣∣∣∣
2

· ||eU ||2

= p||eM||2 + q||eU ||2
= 2p|ε|+ q||eU ||2.

Since both s0 and s∗ satisfy (3b), then TVA(s
∗) ≤ TVA(s

0),
and we obtain

||(I−A)e||2 = ||(I−A)(s0 − s∗)||2
≤ ||(I−A)s0||2 + ||(I−A)s∗||2
≤ 2||(I−A)s0||2
≤ 2|η|.

Combining these inequalities, we get

||e||2 =

∣∣∣∣∣∣∣∣12(I+A+ I−A)e

∣∣∣∣∣∣∣∣
2

≤ 1

2
(||(I+A)e||2 + ||(I−A)e||2)

≤ 1

2
(2p|ε|+ q||eU ||2 + 2|η|),

which yields (13).

Theorem 1. If q < 2, then the estimation error on the un-
known part is bounded by

||eU ||2 ≤ 2p|ε|+ 2|η|
2− q

. (14)

Proof. Using Lemma 1, we have

||eU ||2 ≤ ||e||2 ≤ p|ε|+ q

2
||eU ||2 + |η|. (15)

By rearranging the terms in (15), we obtain (14).

The condition q < 2 in Theorem 1 may not hold for some
matrices. However, if A is symmetric, we have q ≤ || I+A ||2
≤ || I ||2 + ||A ||2 = 2, since ||A ||2 = 1. Also, note that

the upper bound is related to the smoothness of the true graph
signal and the noise level of the measured part. A central
assumption of any inpainting technique is that the true signal
s0 is smooth. If this assumption does not hold, then the up-
per bound is large and useless. When the noise level of the
measured part is smaller, the measurements from the known
part are closer to the true values, which leads to a smaller
estimation error.
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Method Ratio of known labels
λ 0.5% 1% 2% 5% 10%

GTVM 80.25 94.76 95.18 95.28 95.20
GTVR 0.01 80.16 94.68 95.09 95.18 95.13

0.1 79.99 94.47 95.11 95.19 95.15
1 75.64 92.62 94.99 95.26 95.25

10 61.68 68.13 89.02 95.15 95.43
100 61.59 57.26 54.72 73.62 92.28

HF 51.58 53.15 60.75 86.05 94.68
LapR 0.01 51.47 53.48 60.79 85.90 94.62

0.1 50.64 54.40 61.14 85.22 94.55
1 50.25 56.49 60.50 79.29 93.94

10 50.07 49.84 54.39 62.83 80.69
100 51.29 49.74 50.16 52.04 55.95

AGF 84.81 88.36 94.08 95.00 95.10

Table 1: Accuracy of political blog classification.

Method Ratio of known masses
λ 0.5% 1% 2% 5% 10%

GTVM 20.18 9.67 5.29 3.93 3.54
GTVR 0.01 14.71 9.28 4.92 3.88 3.52

0.1 12.89 8.97 4.95 3.92 3.49
1 10.12 9.11 5.14 3.58 3.24

10 8.84 10.49 4.12 3.08 2.84
100 15.70 7.13 3.80 3.00 2.80

HF 38.66 19.44 5.29 3.31 2.9
LapR 0.01 38.75 19.49 5.30 3.32 2.9

0.1 39.52 19.99 5.42 3.34 2.9
1 46.29 24.78 6.83 3.65 2.95

10 74.38 52.64 22.90 9.44 5.13
100 96.32 85.43 66.84 47.86 32.1

Table 2: The mean square error for the bridge condition iden-
tification.

5. EXPERIMENTS

We now apply the proposed algorithm to the classification of
online blogs and to the bridge condition identification for in-
direct bridge structural health monitoring. We compare the
proposed algorithm with Laplacian regularization (LapR) and
harmonic functions (HF) discussed in Section 4.1. In classi-
fication of online blogs, we also compare the proposed algo-
rithm with adaptive graph filtering (AGF) [12, 13], which is
a semi-supervised classifier that combines the decisions from
multiple graph filters using a semi-supervised weighting func-
tion.
5.1. Classification of online blogs

We consider the problem of classifying N = 1224 online po-
litical blogs as either conservative or liberal [14]. We represent
conservative labels as +1 and liberal ones as −1.

The blogs are represented by a graph in which nodes repre-
sent blogs, and directed graph edges correspond to hyperlink
references between blogs. For a node vn its outgoing edges
have weights 1/deg(vn), where deg(vn) is the out-degree of
vn (the number of outgoing edges). We randomly labeled
0.5%, 1%, 2%, 5% and 10% of blogs and applied the inpaint-
ing algorithms to estimate the labels for remaining nodes. Es-
timated labels were thresholded around zero, so that positive
values were set to +1 and negative to −1.

Classification accuracies of GTVM, GTVR, HF, LapR and
AGF averaged over 30 tests for each labeling ratio are shown
in Table 1. For proper evaluation, values of λ ranging between
0.01 and 100 were used for GTVR and LapR. In most cases,
GTVM provides the most accurate classification. Note that
GTVR is less sensitive to the value of λ than LapR, and our
proposed methods achieve significantly higher accuracy than
LapR and HF for low labeling ratios.

5.2. Bridge condition identification
We next consider the bridge condition identification prob-
lem [15, 16]. Monitoring infrastructure has become a major
research subject within the civil engineering community. On
operational bridges, signals can be gathered frequently but vi-
sual inspections typically occur every two years, which leads
to a low labeling ratio. To validate the feasibility of indirect
bridge structural health monitoring, a lab-scale bridge-vehicle
dynamic system was built. Accelerometers were installed on
a vehicle that travels across the bridge; acceleration signals
were then collected from those accelerometers [16]. To sim-
ulate different bridge conditions in a lab-scale bridge, masses
with various weights were put on the bridge. We collected
30 acceleration signals for each of 31 mass levels, with an
interval of 5 grams from 0 to 150 grams, to simulate different
severity of damages, for a total of 930 acceleration signals.
For more details, see [17].

The recording are represented by an 8-nearest neighbor
graph, in which nodes represent recordings, and each node is
connected to eight other nodes that represent the most simi-
lar recordings. The graph shift A are constructed as Ai,j =
Pi,j /

∑
i Pi,j , where

Pi,j = exp
−N2||xi − xj ||2∑

i,j(||xi − xj ||2)
,

and xi is a vector representation of the ith recording. We ran-
domly assigned known masses to 0.5%, 1%, 2%, 5% and 10%
of recordings and applied the inpainting algorithms to estimate
the masses for remaining nodes.

The mean square errors for estimated masses averaged
over 30 tests for each labeling ratio are shown in Table 2. The
proposed GTVR approach yields the lowest errors and is less
sensitive than LapR to the change of the tuning parameter
λ. Overall, our proposed method achieve noticeably smaller
errors than Laplacian-based method for low labeling ratios.

6. CONCLUSION
We presented a new algorithm for signal inpainting on graphs
that, unlike previous approaches, is applicable to arbitrary
graphs. We formulated corresponding minimization problems
and derived closed-form solutions, as well as calculated an
upper bound on the resulting error. We identified the relation
between our approach and previous methods via regression on
graphs. Experiments on real-world datasets of online political
blogs and indirect bridge structural health monitoring showed
that the proposed algorithm outperforms the graph Laplacian
based method.
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1 INTRODUCTION 
 
With aging infrastructure both in the United States 
and abroad, structural health monitoring (SHM) for 
civil applications has become a focus of intense 
research as a means to objectively determine the 
condition of a structure.  

The American Society of Civil Engineers reports 
that of the 600,000 bridges within the United States, 
one in nine bridges is rated as structurally deficient 
(ASCE 2013). In addition, the recent collapse of the 
I-5 Bridge in Washington State and the earlier 
collapse of the I-35 Bridge in Minneapolis 
demonstrated the need for advanced technologies to 
monitor bridges. Researchers in the SHM 
community have already made significant 
contributions towards developing sensing systems 
and damage detection algorithms (Doebling et al. 
1996, Chang 2011, Frangopol et al. 2010, Casciati 
and Giordano 2010) 

The ultimate goal of SHM is to determine the 
remaining useful life of the structure. The state of 
the structure can be determined through a five-step 
process: (1) existence, (2) localization, (3) type, (4) 

1 These authors contributed equally to this work.  

severity and (5) prognosis of the damage (Rytter 
1993).  

The vast majority of monitoring systems for 
bridges require either wired or wireless sensors 
placed directly on the structure of interest. These 
techniques have shown some promising results but 
they require significant capital investment. This 
paper focuses on an indirect monitoring paradigm 
where the sensors are placed on a passing vehicle. 
This indirect approach is more economical; a fleet of 
vehicles could potentially monitor a large bridge 
inventory (Lin et al. 2005, Cerda et al. 2010).  

Previous work on the indirect monitoring 
paradigm has examined determining the state of the 
structure between two (binary classification) or 
several cases (multiclass classification) (Cerda et al. 
2013). Cerda et al simulated damage by adding a 
‘proxy damage’ to a laboratory scale model. In one 
experiment, they varied the size and location of the 
proxy damage to measure their ability to determine 
(2) localization and (4) severity of the damage. They 
quantified the accuracy using multiclass 
classification with several discrete classes. 

 In this paper, we expand on the work of Cerda 
et al. by performing a regression on a large dataset 
of proxy damage locations and proxy damage 
severities, using the same laboratory model as Cerda 
et al. Using this regression we can determine the 
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ABSTRACT: This paper presents algorithms for diagnosing the severity and location of damage in a 
laboratory bridge model. We use signal processing and machine learning approaches to analyze the vibration 
responses collected both directly from the bridge model and indirectly from a vehicle passing over the model. 
Features are selected using principal component analysis (PCA), and a regression is performed using the 
kernel regression method. Various “damage” severities and positions are simulated on a laboratory bridge 
model by placing additional mass on the bridge. We perform two experiments; one to measure our ability to 
detect damage severity (i.e. size of the mass), and a second to measure our ability to detect damage location 
(i.e. position of the mass). In the first experiment, we vary the magnitude of the mass while keeping its 
location constant. In the second experiment, we vary the location of the mass while keeping its magnitude 
constant. In both cases, we use a portion of our data to train the algorithm, and another portion to test its 
validity. We report the accuracy of correctly quantifying the nature of the mass from the test data as a mean 
square error (MSE).  
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state of the structure for an infinite number of mass 
locations and sizes within our training set.  To 
build the regression, we apply principal component 
analysis to the acceleration signals, and train the 
kernel regression model by the collected data. This 
model determines the size and the location of the 
damage proxy using the MSE as the evaluation 
score.  

2 EXPERIMENTAL SETUP AND PROTOCOL  

2.1 Experimental setup (Cerda et al. 2013; Wang et 
al. 2013) 
A general view of the laboratory model used in this 
project is shown in Figure 1, and schematic of the 
setup is shown in Figure 2. The model consists of a 
vehicle that is pulled across the rails by a cable 
system. The vehicle starts on ‘Ramp 1’, accelerates 
up to a constant speed, crosses the middle section, 
the “bridge,” then decelerates on ‘Ramp 2.’ The 
vehicle has wired accelerometers so there is a cable 
rail above to ensure these wires do not interfere with 
its motion.  

The “bridge” is an aluminum plate, 2438 mm (8 
feet) long, with two angle beams acting as girders 
and two rails to guide the vehicle. The vehicle 
model, as shown in Figure 3, has an independent 
suspension system. Both the vehicle and the bridge 
were instrumented with commercial accelerometers. 
On the vehicle, two sensors are on the sprung 
portion of the vehicle (‘front chassis sensor’ and 
‘rear chassis sensor’), and two sensors are on the 
unsprung portion of the vehicle, rigidly attached to 
the wheels (‘front wheel sensor’ and ‘rear wheel 
sensor’), as shown in Figure 3. One sensor was 
placed underneath the bridge deck at midspan 
(‘bridge sensor’).   
 
 

 
Figure 1. The general view of the laboratory setup. 

 
 
The motors governing the movement of the 

vehicle and the data-acquisition systems are both 

controlled by National Instrument’s○R  PXI system 
running LabView○R . By using a single system, we 
can spatially align the time series data from different 
runs using the vehicle’s position. More details about 
the experimental setup can be found in (Cerda et al. 
2013). 

 

 
Figure 2. The illustration of the laboratory model. 

 
 

 
Figure 3. Details of the vehicle. 

 

2.2 Protocol 
In this experiment, the damage proxy is the presence 
of a mass on the deck. We assume that as the mass 
level changes gradually, the vibration characteristics 
will change accordingly. By mapping the 
relationship between changes in the acceleration 
signal to changes in the magnitude of the mass, we 
can determine the state of the bridge from an 
acceleration signal involving a change in mass size 
with our training range.  The same assumption is 
applied to the change of the positions.  

We assume a heavier mass means more severe 
damage as it is a more significant change from the 
baseline condition. In this paper, we use 31 mass 
levels, with an interval of 5 grams from 0 to 150 
grams. We ran the experiments at 2 different speeds. 
The bridge itself weighs 15.5kg so the added mass 

A36



varies from 0%-1% of the mass the bridge. For these 
severity tests, we have 31 (mass) × 2 (speeds) × 30 
(iterations) = 1860 (trials). 

To investigate damage localization, a mass of 
200 grams was placed at 30 locations, with an 
interval of 8 cm. We ran the experiment at 4 
different speeds. The positions of the mass are 
shown in Figure 4. In total, for the localization tests, 
we ran 30 (locations) × 4 (speeds) × 30 (iterations) = 
3600 (trials).  
 
 

 
Figure 4. Illustration of mass positions on the deck. 

3 REGRESSION FOR STRUCTURAL 
SCENARIOS  

3.1 The framework of the signal-processing system 
The goal of our signal processing approach for this 
experiment was to design a map to associate an 
acceleration signal with its corresponding bridge 
condition. In this experiment, we varied the bridge 
condition in small increments so that we could 
examine the evolution of the signal as the location or 
the severity of the proxy damage changed. By 
mapping this relationship, we were able to record a 
new acceleration signal of a previously unseen 
bridge condition, and predict that condition. There 
are two main challenges: the acceleration signals lie 
in a high-dimensional space, which is hard to 
visualize and further model; there is no closed-form 
formula to describe the relationship between the 
acceleration signals and the bridge conditions. We 
solve the first challenge by using PCA to reduce the 
dimensionality and solve the second one by using 
kernel regression to build a nonparametric 
regression model. The signal-processing system thus 
contains the dimensionality reduction block and the 
regression block shown in Figure 5. 
 

 
 

Figure 5. The system of regression for structural scenarios. 
 

3.2 Dimensionality reduction and visualization 
Each acceleration signal is sampled at 1667 Hz, and 
the vehicle takes roughly 2 seconds to cross the 
bridge (depending on its speed), it then contains over 
3000 signal samples. The high dimensionality leads 
to the difficulty in visualizing and understanding the 
distribution of acceleration signals; it is also hard to 
perform further analysis because of the so-called 
curse of dimensionality (Duda et al. 2000). To solve 
this, we use PCA (Duda et al. 2000) to reduce the 
dimensionality. It finds an orthogonal linear 
transformation from the given dataset and 
transforms the signals into a new coordinate 
system such that the first coordinate captures the 
greatest variance, the second coordinate captures the 
second greatest variance, and so on. The algorithm 
to compute PCA is as follows. 

  
 

 
The implementation details of dimensionality 

reduction block are as follows: we first take the 
discrete Fourier transform of each acceleration 
signal and compute the magnitudes of their 
frequency spectrums; we then use PCA to analyze 
the magnitudes of all the acceleration signals. As an 
example, for visualization, we only preserve the first 

PCA (extract top k eigenvectors as features): 
 
Given data X={x1, …, xn}, 
 
1. Calculate the mean of each column: 

.   
2. Subtract the mean from each vector xi and 
get a new matrix X. 
 
3. Calculate the covariance matrix Σ of X. 
 
4. Calculate eigenvectors and eigenvalues of 
Σ and sort the eigenvectors ascending order 
based on the corresponding eigenvalues. 
 
5. Select the first k principal components as 
features. 
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three coordinates in Figure 6 to Figure 10. Each 
subplot is the feature spectrum extracted from the 
data collected from one position on the vehicle. The 
colors from red to blue indicate the increasing mass 
from 0 gram to 150 grams as can be seen on the 
colorbars. These figures show how the features of 
the acceleration signals change as the severity of the 
mass increases. We see a gradual change in the 
features as the size of the proxy damage increases; 
we can use these graphs to justify our mapping 
approach. For a given acceleration signal, we can 
plot its features in this space, and can deduce the 
condition of the bridge from the position of the 
features relative to known cases.  

 
Figure 6. Visualization using first three principal components 

from bridge sensor accelerometer signals. 

 
Figure 7. Visualization using three principal components from 
back wheel sensor accelerometer signals. 

 
Figure 8. Visualization using first three principal components 

of the back chassis sensor accelerometer signals. 

 
Figure 9. Visualization using first three principal components 

from front chassis sensor accelerometer signals. 

 
Figure 10. Visualization using three principal components from 

front wheel sensor accelerometer signals. 
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3.3 Signal reconstruction for verification 
To verify that using only first three principal 
components will capture the characteristics of the 
original data, we reconstruct the signals based only 
on these principal components. In Figure 11, we 
demonstrate that the vast majority of the information 
in  the signal is in the first several principal 
components—the singular values is a measure of 
information. Figures 12-16 show the reconstruction 
the signal for each of the sensor. They demonstrate 
that the characteristics of the vibration, such as peak 
occurrences, are very close to the original data, 
which means that to a certain extent, we can 
represent the original data by the features extracted 
from the PCA. 

 
Figure 11. Singular value analysis. 

 
Figure 12. Original and reconstructed signals of the front wheel 
sensor. 

 

 
Figure 13. Original and reconstructed signals of the front 

chassis sensor. 

 
Figure 14. Original and reconstructed signals of the back wheel 

sensor. 

 
Figure 15. Original and reconstructed signals of the back 
chassis sensor. 
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Figure 16. Original and reconstructed signals of the bridge 
sensor. 

3.4 Regression Model 
Regression analysis is an approach that finds 
possible connections among all the variables and is 
then used as the means of predicting when a new 
dataset is presented to the system. Many techniques 
for regression analysis have been developed. These 
techniques are categorized as parametric and 
nonparametric regression (Wasserman 2005). 
Parametric regression asks for parameters in the 
model and nonparametric regression relies on the 
functions that the user chooses, as the basis for data 
processing.  

We use a nonparametric regression analysis 
method, called kernel regression. After applying 
PCA, the acceleration signals are represented in a 
more compact way by using the top three principal 
components. Based on this, we then look for a 
relationship between the acceleration signals and the 
bridge conditions. We train the regression model 
from the given dataset by using kernel regression 
(Wasserman 2005). The advantage of kernel 
regression is that it is a nonparametric method and it 
finds a nonlinear relationship between a pair of 
variables by averaging locally. Noh et al. (2012) 
used kernel regression to define fragility functions 
for damage classification purposes. Kernel 
regression works in two phases, the training phase 
and the testing phase. In the training phase, the 
inputs of the kernel regression are the first three 
coordinates of the acceleration signals after applying 
PCA and their corresponding bridge conditions;  
the output is the regression model. In the testing 
phase, the inputs are the unlabeled acceleration 
signals and the regression model trained previously, 
and the output is the predicted bridge condition. 

 

 

 

4 RESULTS  
 

 

4.1 Regression Testing Protocol 
To evaluate our regression system, we perform a 
series of cross-validation experiments. For each 
speed and each sensor, we randomly selected 90% of 
the acceleration signals from all bridge conditions 
and use them as the training set. The other 10% of 
the signals form the test set. This random selection is 
repeated in a 30-fold validation. For each case, we 
report MSE as the evaluation score. 

4.2 Severity Results 
The goal is to detect the weight changes with 
different masses put on the bridge through analyzing 
the acceleration signals. After the model is built, we 
randomly choose the signals with the mass on the 
bridge in the range of training data and calculate the 

Algorithm (Regression for Structural 
Scenarios ) 
 
Input: Labeled training dataset and unlabeled 
testing dataset. 
 
Output: Predicted class labels for the testing 
dataset. 
 
Training phase: 
 
1. Compute the discrete Fourier transform of 
each signal in the training dataset.  
2. Conduct the principal component analysis 
on the training dataset. 
3. Preserve the first three components of each 
signal and the corresponding eigenvectors. 
 
4. Train a kernel regression model by using 
the three components of each signal in the 
training dataset and the corresponding class 
labels. 
 
Testing phase: 
 
1. Compute the discrete Fourier transform of 
each signal in the testing dataset.  
2. Represent signals in the testing dataset by 
projecting them to the eigenvectors trained in 
the training phase. 
3. Feed the signals into the kernel regression 
model trained previously and get the 
predicted class label. 
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MSE. These results are shown in Figure 17. MSE for 
each sensor is found at two different speeds. An 
MSE of zero would denote a perfect regression, and 
an MSE of 75 (=302/12) would denote regression 
that was no better at identifying the size of the mass 
than a random guess. From the result, we see that 
signals from the wheel have high MSE error so they 
are less useful, while the signals from the chassis 
and the bridge have smaller prediction error.  

 
Figure 17. MSE result for the severity regression. 

 
4.3 Localization Results 
 
The goal here is to find the location of the mass 
through analyzing the acceleration signals. We 
randomly choose signals from locations within the 
training range and calculate the MSE as shown in 
Figure 18. Again, a perfect regression would have 
MSE of zero, and a regression that gave a 
completely random answer would have a MSE error 
of 80.1 (=312/12). From the result, it is indicated in 
the similar way with the location case that signals 
from the chassis have smaller prediction error than 
that of the signals from wheels. The MSE for the 
chassis signals is around 15 on average at different 
speeds.  
 
4.4 Analysis 
 
From the above results, we conclude that for the 
signal processing approach used in this paper, 
signals from the chassis perform better than signals 
from the wheels in terms of the prediction error. One 
possible explanation is the low-pass filtering 
function of the spring supporting the chassis. As the 
vehicle is traversing, the spring has the function to 
filtrate the signal to keep signals with relative low 
frequencies and filter out signals with relative high 
frequencies, which associate with noise. 

It is also worth noting that the signals from the 
chassis outperform the signals from the 
accelerometer located at the midspan of the bridge. 
This supports our overarching hypothesis that an 

indirect monitoring approach where sensors are 
placed on the vehicle may be at least as effective as 
a direct monitoring approach. 
 

 
Figure 18. MSE result for the location regression. 

5 CONCLUSIONS 
 

We present the latest results of our research into 
indirect structural health monitoring. We expand on 
our previous work on locating and quantifying 
damage in a bridge by using the acceleration signal 
from a passing vehicle. While previous research has 
looked at several discrete locations or severity levels 
using multiclass classification, here we build a 
regression model that can handle an infinite number 
of possible damage locations and severities within a 
particular range. We use PCA to reduce the 
dimensionality of the signal, and kernel regression, a 
non-parametric approach, to map the signals to the 
bridge condition. We obtain low errors (quantified 
by MSE) for all sensors, in particular for chassis 
sensors. The error for the chassis sensors is lower 
than the error for the bridge sensor, which indicates 
that an indirect monitoring approach may be 
feasible. This work brings us one step closer to 
providing a bridge diagnosis in an indirect fashion. 
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Abstract—We present an adaptive graph filtering approach to
semi-supervised classification. Adaptive graph filters combine de-
cisions from multiple graph filters using a weighting function that
is optimized in a semi-supervised manner. We also demonstrate the
multiresolution property of adaptive graph filters by connecting
them to the diffusion wavelets. In our experiments, we apply
the adaptive graph filters to the classification of online blogs
and damage identification in indirect bridge structural health
monitoring.

I. INTRODUCTION

With the growing demand in analysis of signal generated
by various networks, signals with complex structures arise that
require novel processing techniques. Recently, signal process-
ing on graphs has emerged as a new approach to analyze
signals with irregular structure that reside on graphs [1]–
[4]. Among many applications of this theory, we consider
signal classification, which models each signal as nodes of a
representation graph, and their labels as a graph signal [4].
Given a subset of initial labels, unknown labels are estimated
by propagating known ones along the edges of the graph using
graph filters.

In this paper, we propose an adaptive graph filter that extends
the application of graph filters to signal classification. Our
technique uses an adaptive weighting algorithm that combines
results from different graph filters into a global decision. We
show that the proposed technique possesses multiresolution
properties similar to diffusion wavelets [5]. We also demon-
strate applications of adaptive graph filters to the classification
of online blogs and damage indentification in indirect bridge
structural health monitoring.

II. BACKGROUND AND PROBLEM FORMULATION

In this section, we introduce the background material nec-
essary for the rest of the paper. We formulate the problem of
signal classification and introduce the discrete signal processing
on graphs theory that provides the foundation for the proposed
adaptive graph filtering technique.

Classification. The purpose of classification is to assign each
signal to one of the given classes [6]. Let X = {x(i) ∈ Rd}Ni=1

be the given dataset with N = L+U elements. The first L ele-
ments form the labeled dataset L = {x(i) ∈ X}Li=1, for which
the ground-truth labels Y = {y(i) ∈ {1, 2, . . . , C}}Li=1

Notations

X = {x(i)} input dataset i = 1, . . . , N

L = {x(i)} labeled dataset i = 1, . . . , L

U = {x(i)} unlabeled dataset i = L+ 1, . . . , N

Y = {y(i)} ground-truth labels for L i = 1, . . . , L

Ŷ = {ŷ(i)} estimated labels for U i = L+ 1, . . . , N

q(i) ground-truth vector i = 1, . . . , L
Q ground-truth matrix L× C

q̂(i) confidence vector i = L+ 1, . . . , N

TABLE I: Notation used in this paper

are given. The other U elements form the unlabeled dataset
U = {x(i) ∈ X}Ni=L+1. Hence, X = L ∪ U .

A classifier system accepts the entire dataset X and the
ground-truth labels Y as inputs, and produces the estimated
labels Ŷ = {ŷ(i) ∈ {1, 2, . . . , C}}Ni=L+1 for the unlabeled
dataset U (see Table I).

We formulate the classification problem as a mapping of the
input signal to each class with a certain probability. We regard
the label as a posterior probability vector q̂ ∈ RC , where the
cth component, q̂c, is the probability that a signal belongs to
the cth class. Since q̂ expresses a confidence of an assigned
label, we name it a confidence vector. The confidence vector
for a labeled signal i = 1, 2, . . . , L, is the ground-truth vector,
q ∈ RC , with 0s everywhere except 1 in position c indicating
membership in class c. The ground-truth matrix Q of size L×C
collects all L ground-truth vectors as its rows, that is,

Q =
[
q(1) q(2) . . . q(L)

]T
.

Discrete Signal Processing on Graphs. Discrete signal
processing on graphs is an extension of the traditional signal
processing theory to signals with complex structure residing on
irregular domains [4]. The dataset is represented by a graph
G = (V, P ), where V = {vi}Ni=1 is the set of nodes that
represents signals and P ∈ CN×N is an adjacency matrix of
the graph called a graph shift. We extend the definition of graph
signals from [4] from one-dimensional to D-dimensional signal
as follows: a graph signal s is a map on the set of nodes

s : V → CN×D,

where D is the dimension of the graph signal at each node.
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A linear shift-invariant system, or, a graph filter, is defined
as

H = h(P ) =
K∑
k=0

hkP
k, (1)

with hk ∈ C, k = 0, 1, . . . , K. A graph filter H ∈ CN×N

applied to a graph signal s ∈ CN×D produces an output, which
is again a graph signal,

Hs = h(P )s.

Discrete signal processing on graphs then defines other
fundamental signal processing concepts including the graph
Fourier transform, frequency, spectrum, spectral decomposi-
tion, and impulse and frequency responses.

III. ADAPTIVE GRAPH FILTERING

In this section, we introduce adaptive graph filters. We
also show their multiresolution properties by establishing a
connection to diffusion wavelets.

Graph Filtering as Semi-Supervised Classification. Let
G = (X , P ) be a graph with X = {x(i)}Ni=1 a given datasest
and let P ∈ RN×N be a graph shift defined as

Pi,j =
exp (−ρ(x

(i),x(j))
σ )∑N

i=1 exp (
−ρ(x(i),x(j))

σ )
, (2)

where ρ is a local distance measurement, such as the `2 norm
or the cosine distance, and σ is a scaling coefficient which
scales the local distance. The graph shift defined here is the
Hermitian transpose of the transition matrix of the graph. P
thus has a probabilistic interpretation: constructed as in (2),
Pi,j gives the probability of transition from the jth node to the
ith one in one step [7].

Now we define an adaptive graph filter

H = h(P ) =

K∑
k=1

hkP
k. (3)

This adaptive graph filter is defined similarly to (1), except
that its coefficients, hk, depend on the data and are selected
adaptively. We assign h0 = 0, since P 0 does not contribute to
the propagation of the labels in the classification problem as
will be shown later.

Let the graph signal be the confidence matrix of all the
signals on the graph, called prior confidence matrix, that is,
the following map: s : X → RN×C , defined as

Q̂pr =

[
Q

0u×C

]
.

In other words, the first L rows of Q̂pr are the confidence
matrix Q representing the labeled dataset, while the other U
rows are all zeros representing the unlabeled dataset. The prior
confidence matrix thus starts with the knowledge on the labeled
dataset (the ground truth) and without any knowledge on the
unlabeled dataset.

By applying an adaptive graph filter (3) to the prior confi-
dence matrix Q̂pr, the posterior confidence matrix is

Q̂ps = HQ̂pr, (4)

where the ith row is the confidence vector q̂(i) for the ith node.
The coefficients hk of the adaptive filter (3) are then found

as follows. Rewrite (4) as

Q̂ps
(a)
=

K∑
k=1

hkP
kQ̂pr =

K∑
k=1

hkQ̂k, (5)

where (a) follows from (3) and Q̂k is the N × C confidence
matrix for the kth graph shift defined as Q̂k = P kQ̂pr. For each
i, the desired confidence vector q̂(i) (ith row of Q̂ps) is thus a
weighted linear combination of corresponding rows from each
graph shift Q̂k. The optimal filter coefficients are designed to
fit the confidence vectors of the labeled signals from all the
graph shifts to the ground truth and to minimize the labeling
uncertainty of the unlabeled signals. We introduce the labeling
uncertainty measure [8], [9] as

M(q̂) = H(q̂) (χd>T + λ(d)χd≤T ), (6)

where χI is the indicator function of an interval I , d = |q̂(1)−
q̂(2)| with q̂(1), q̂(2) the first and second largest element in q̂,
respectively, T is the threshold, and λ(d) = 1 + 5(d/T − 1)2

is a penalty function that is large when the first and second
largest elements are close. The optimal filter coefficients are
then given by the solution to the minimization problem

ĥ = argmin
h
{α

L∑
i=1

‖q(i) − Q̂(i)h‖

+ (1− α)‖h− γ‖}, (7)

where h =
[
h1 . . . hK

]T
with the constraint ||h||1= 1;

α = L/(L + U) is the labeling ratio; matrix Q̂(i) =[
q̂
(i)
1 q̂

(i)
2 . . . q̂

(i)
K

]
is an C ×K confidence matrix of the

ith signal that collects the graph shifts’ individual confidence
vectors; and γ =

[
γ1 γ2 . . . γK

]
collects the discrimina-

tive powers of each graph shift,

γk =
e−(β/U)

∑N
i=l+1 M(q̂

(i)
k )∑K

j=1 e
−(β/U)

∑N
i=l+1 M(q̂

(i)
j )

.

Here, β is the decay coefficient that controls the distribution
of the discriminant power from all the graph shifts. The first
term in (7) represents the contribution from all labeled signals.
The second term in (7) represents the contribution from all
unlabeled signals; to obtain it, we fit weights to the confidences
from all the graph shifts . We use the labeling ratio to balance
these two terms. Since this is a convex optimization problem, it
is numerically efficient to solve. After weighting, we compute
the global decision as ŷ(i) = argmaxc q̂

(i)
c , where q̂(i) =

Q̂(i)ĥ (see Algorithm 1). For more details, see [9].
Relation to Diffusion Functions. Diffusion functions are

the graph-based semi-supervised classifiers [10]. The classifier
operates by propagating known labels using the transition
matrix a finite number of times. Given a transition matrix W
and a prior confidence matrix Q̂pr, the posterior confidence
matrix Q̂ps is obtained by Q̂∗

ps = Q̂∗
prW

t, where ∗ denotes
the Hermitian transpose and t is the transition time. If the filter
coefficient h is a Kronecker delta impulse at position t, then
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Algorithm 1 Adaptive graph filter

Input X input dataset
Q̂pr prior confidence matrix

Output Q̂ps posterior confidence matrix

Parameters Pi,j graph shift
hk filter coefficients

Function AGF(X , Q̂pr)
Pi,j = (2) graph shift construction
h = (7) filter coefficient optimization
for k = 1 : K do filtering

Q̂k = PkQ̂pr

Q̂ps =
∑K

k=1 hkQ̂k weighting
return Q̂ps

h = δt, the adaptive graph filter coincides with the diffusion
function. Hence, diffusion functions form a subset of the
adaptive graph filters that have only one non-zero coefficient.
In practice, it can be hard to determine the required transition
time; as a consequence, the performances of diffusion functions
can be susceptible to initial conditions. In contrast, the adaptive
graph filter learns the contribution from each transition time by
using (7).

Relation to Diffusion Wavelets. Diffusion wavelets are a
multiscale framework for the analysis of signals with complex
structure [5]. They can be seen as an extension of the classical
wavelet theory, where, the diffusion wavelet basis is learned
from the geometry of the signal structure in a data-adaptive
way. A diffusion wavelet basis is constructed by dilation using
the dyadic powers of the transition matrix, the idea being
that they propagate local relationships to global relationships
throughout the graph.

Given a graph with the transition matrix T , the transition
matrix at the jth resolution level is T 2j , j = 1, 2, . . .. Since
the second singular value of the transition matrix is less than 1
to keep the graph connected, only the first singular value is 1.
Consequently, if the transition matrix is raised to a high power,
all the singular values disappear except for the first one,

λ2
j

i → 0, i = 2, 3, . . . , N as j →∞.

When j = 1, the transition matrix T measures local pairwise
similarities; increasing the power j gradually decreases the rank
of the transition matrix T 2j and causes local information of the
graph to be missed since the resolution on the graph changes
from finest to the coarsest. Thus, by changing j, we can both
perform a multiresolution analysis as well as doing it in a
computationally efficient manner.

The adaptive graph filter in (3) is formed as a linear
combination of graph shifts P raised to power k. When k
is large, P k become a low-rank matrix describing the global
information of the graph. Since the graph filter P is defined
as the Hermitian transpose of the transition matrix T in (2),
P k works for the adaptive graph filter just as T 2j does for
diffusion wavelets. Each k corresponds to a different resolution
on the graph, and thus, adaptive graph filter actually performs
multiresolution classification on the graph. It weighs the clas-
sification results from each resolution to produce the global

result. The filter coefficients represent the discriminative power
of each resolution.

IV. EXPERIMENTAL RESULTS

In this section, we apply adaptive graph filtering to classi-
fication of online blogs and damage identification in indirect
bridge structural health monitoring.

A. Classification of Online Blogs

Dataset. We consider 1224 online political blogs that we
wish to classify as conservative or liberal based on their con-
text [11]. The graphs corresponding to each blog are obtained
by tracing hyperlink references between blogs.

Experimental Setup. We perform a binary clasification, and
vary the labeling ratio as 0.5%, 1%, 2%, 5% and 10%; in
other words, we label 6, 12, 24, 60, 120 blogs, respectively.
We considered two methods for which nodes to label initially:
random selection, and selection of blogs with most hyperlinks.
We ensure we have the same number of signals from both
classes in the labeling dataset and compare the performances of
the diffusion functions (DF) and adaptive graph filters (AGF).
We choose the transition time t = 2, filter length K = 10
and the decay coefficient β = 1, and perform a 30-fold cross-
validation.

Results. Fig. 1 shows the dependence of classification ac-
curacy on the labeling ratio for the two selection mechanisms.
Both show similar trends: adaptive graph filter works consis-
tently better than diffusion functions. Another interesting obser-
vation is that when labeling ratio is low, initial labeling with
most hyperlinks provides better accuracy, but when labeling
ratio is sufficiently high, initial labeling with most hyperlinks
has no advantage over initial labeling with random selection.
The reason is that when labeling ratio is low, nodes with higher
degree propagate labels to more nodes, but when labeling ratio
is high, a large number of labeled nodes has the same effect.

(a) Random selection. (b) Most hyperlinks.

Fig. 1: Accuracy as a function of the labeling ratio.

B. Damage Detection in Bridge Structure Monitoring

Dataset. We built a lab-scale bridge-vehicle dynamic system
and put a sensor on a vehicle, and let it move across the
bridge. We capture vibration characteristics of the bridge from
the vibration of the traversing vehicle through the acceleration
signal. We collected 30 acceleration signals for each of 13
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V S AGF DF SVM

1 1 87.98 83.70 57.97
2 89.55 85.78 70.42
3 89.91 86.25 74.29
4 93.87 88.08 74.82
5 77.64 74.87 70.68
6 85.24 82.43 67.13
7 66.23 65.31 59.48
8 67.11 66.52 56.53

2 1 80.99 78.17 49.75
2 70.32 67.30 53.64
3 86.09 82.50 67.96
4 82.86 79.57 61.52
5 81.22 77.92 62.75
6 81.73 80.17 66.89
7 85.48 82.87 65.09
8 82.57 80.32 48.57

TABLE II: Accuracy comparison of Vehicles (V) 1 and 2,
with Speeds (S) 1, 2, . . . , 8, and labeling ratio of 10%.

different bridge conditions, 8 different speeds and 2 different
vehicles, for a total of 6240 acceleration signals [8], [12].

Experimental Setup. Given a specific vehicle driven at a
specific speed, we want to classify 13 bridge conditions, in
particular with a low labeling ratio. We have 16 vehicle-speed
cases for each of which there are 30 acceleration signals per
13 bridge conditions, and vary the labeling ratio as 10%, 30%,
50%, 70% and 90%; the final accuracy is the average over the
13 scenarios.

We ensure we have make the same number of signals from
both classes in the labeled dataset. To reduce dimensionality of
the raw acceleration signals, we conduct principal component
analysis on all the signals and preverve 95% energy [6].
We then compare the performances of kernel support vector
machine (SVM), which is a standard classifier that works
through maximizing the margins of different classes [6], the
diffusion functions and the adaptive graph filter. We construct
a k = 4 regular graph (each vertex connects to 4 neighbors).
We choose the local measurement ρ to be the cosine distance,
scaling coefficient σ = (1/N2)

∑
i,j ρ(x

(i), (x(j))), transition
time t = 8, filter length K = 30, the decay coefficient β = 1,
and the penalty threshold T = 0.02, and perform a 30-fold
cross-validation.

Results. Table II compares the performance of different
classifiers with the low labeling ratio of 10%. We use V for
vehicle and S for speed. In our experiments, kernel support
vector machine performs poorly, diffusion function produce
better accuracy, while the adaptive graph filters yields the
highest accuracy.

Fig. 2 shows the dependence of classification accuracy on
the labeling ratio for 2 vehicles averaged across 8 speeds. Both
figures show similar trends; as the labeling ratio decreases,
accuracy of SVM drops sharply; performances of diffusion
function and adaptive graph filter stay relatively flat even
at very low labeling ratios; and adaptive graph filter works
consistently better than diffusion functions.

(a) Vehicle 1. (b) Vehicle 2.

Fig. 2: Accuracy as a function of the labeling ratio.

V. CONCLUSIONS

We presented an adaptive graph filtering technique for data
classification based on a semi-supervised optimization algo-
rithm that uses both labeled and unlabeled signals to learn
the filter coefficients. Adaptive graph filters combine decisions
from multiple graph filters to form a global decision. We also
discussed the connection between adaptive graph filters and
diffusion wavelets, and demonstrated their application to data
classification and indirect bridge structural health monitoring.

ACKNOWLEDGEMENTS
The authors gratefully acknowledge support from the NSF

through awards 1130616 and 1017278, as well as CMU
Carnegie Institute of Technology Infrastructure Award.

REFERENCES

[1] D. I. Shuman, S. K. Narang, P. Frossard, A. Ortega, and P. Vandergheynst,
“The emerging field of signal processing on graphs: Extending high-
dimensional data analysis to networks and other irregular domains,” IEEE
Signal Process. Mag., vol. 30, pp. 83–98, 2013.

[2] S. K. Narang and A. Ortega, “Perfect reconstruction two-channel wavelet
filter banks for graph structured data,” IEEE Trans. Signal Process., vol.
60, pp. 2786–2799, 2012.

[3] D. K. Hammond, P. Vandergheynst, and R. Gribonval, “Wavelets on
graphs via spectral graph theory,” Appl. Comput. Harmon. Anal., vol.
30, pp. 129–150, 2011.

[4] A. Sandryhaila and J. M. F. Moura, “Discrete signal processing on
graphs,” IEEE Trans. Signal Process., vol. 61, no. 7, pp. 1644–1656,
2013.

[5] R. R. Coifman and M. Maggioni, “Diffusion wavelets,” Appl. Comput.
Harmon. Anal., pp. 53–94, July 2006.

[6] R. Duda, P. Hart, and D. Stork, Pattern Classification, John Wiley &
Sons, Englewood Cliffs, NJ, 2001.

[7] F. R. K. Chung, Spectral Graph Theory (CBMS Regional Conference
Series in Mathematics, No. 92), Am. Math. Soc., 1996.

[8] S. Chen, F. Cerda, J. Guo, J. B. Harley, Q. Shi, P. Rizzo, J. Bielak,
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ABSTRACT 
 

This paper presents a novel method for interpreting data to improve the 
indirect structural health monitoring (SHM) of bridges. The research presented in the 
study is part of an ongoing study aimed at developing a novel SHM paradigm for the 
health assessment of bridges. In this paradigm, we envision the use of an 
instrumented vehicle that assesses a bridge’s dynamic characteristics while traveling 
across the bridge. These characteristics are then correlated to the health of the 
structure by means of advanced signal processing and pattern recognition approaches. 
In this paper, we present and compare two classification algorithms that locate the 
presence of damages at well-defined locations on the structure: sparse representation 
and the Fourier discriminant methods, and find that the sparse representation method 
provides superior classification accuracy. 

 
INTRODUCTION 
 

The need for bridge structural health monitoring (SHM) has become clear in 
the aftermath of the I-35 Bridge collapse in Minneapolis. In the past two decades, the 
SHM community has done significant work to develop cost-effective technologies 
for the SHM of bridges and other large structures (Doebling et al. 1996; Chang 2011; 
Frangopol et al. 2010; Casciati and Giordano 2010). The majority of these works are 
based on direct methods, in which one or more arrays of sensors are mounted on the 
structure of interest to collect the dynamic and static characteristics of the bridge. 
These characteristics are then processed to infer the structure’s health.  The direct 
methods, however, may be too expensive to be implemented on an entire nation’s 
bridge inventory.   
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The indirect approach, on the other hand, overcomes this limit by installing 
sensors on a moving vehicle that, by crossing the bridge of interest, can capture the 
dynamic vehicle-bridge interaction and thus, indirectly, the dynamic characteristics 
of the bridge itself (Lin et al. 2005; Cerda et al. 2010). Using sophisticated signal 
processing algorithms, information about the bridge condition can be extracted from 
the vehicle-bridge interaction signals, which may allow for the detection and location 
of structural damage. 

In this paper, we present the latest advancements from an ongoing project at 
Carnegie Mellon University and the University of Pittsburgh aiming to develop a 
holistic indirect health monitoring paradigm for bridges. In these experiments, we 
have focused on a laboratory-scale model, where we simulate the vehicle-structure 
interaction; the structure consists of one simplified laboratory-scaled bridge, 
inspected by a schematized vehicle traveling along rigid rails. The work presented in 
this paper follows (Cerda et al. 2013) and builds on it by studying a new 
feature-selection technique to more accurately identify and locate the presence of 
simulated defects induced on a bridge model.  We compare Fourier discriminant 
method, which has been used in previous work, to the sparse representation method 
to detect and locate damages on the bridge. 
   
EXPERIMENTAL SETUP AND PROTOCOL 
 
Experimental setup. The model used in this study is shown in Figure 1; it consists 
of a mechanical system, a motion-control system, and a data-acquisition system. The 
mechanical system includes the structure and the car. The structure has an 
acceleration ramp, a bridge deck with two rails, and a deceleration ramp. The ramps 
are built to guarantee that the speed of the car is constant when traveling over the 
deck. The deck consists of a simply supported aluminum plate, 2438 mm (8 feet) 
long. Two angle beams act as girders, and two rails, mounted on the top surface, 
guide the car. The car, shown in Figure 2, has four independent suspension systems 
and four pedestal bases. Four accelerometers are secured to the car. Two sensors are 
mounted on top of the front and rear suspensions and two sensors are mounted on the 
top of the front and rear traverse stands. Hereafter, the sensors on the front are 
labeled as A.V. and the ones on the rear as B.V.  

The vehicle is pulled across the bridge by a cable-and-belt system, which is 
connected to the motor, as indicated in Figure 1. The motion-control and the 
data-acquisition systems consist of a National Instruments○R PXI system running in 
LabView○R, a PXI Chassis (NI PXI 1031) with a motion-control card (NI PXI 7342), 
a motion interface (UMI 7772), a stepper drive (P70360) and a dual shaft stepper 
motor (NEMA 34). The acceleration data are collected at a 1667 Hz sampling rate 
and stored for data processing. More details about the experimental setup are 
reported in (Cerda et al. 2013). 
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Figure 1. The lab-scale vehicle-bridge model. 
 

 
Figure 2. Close-up views of the vehicle. 
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Figure 3. Close-up views of the bridge deck. 

 
In addition to collecting data indirectly from the vehicle, we also collect data 

directly from the bridge itself to compare the two data collection techniques. Three 
sensors are mounted underneath the deck at the locations shown in Figure 3. They 
are located at 1/4L, 1/2L and 3/4L, where L is the deck’s span. Figure 3 shows a 
close-up view of the deck. 
 
Protocol. Damage is simulated by either placing mass, changing boundary restraints 
or installing dampers, each at four locations, on the bridge. Our aim is to find the 
accuracy with which we can classify the state of the bridge into these four categories 
(four locations). This four-class classification problem is repeated with two different 
masses, different rotational restraints and different damping conditions (see Table 1). 
The effects of these variations on the fundamental frequency and critical damping of 
the bridge are quantified by performing conventional free vibration tests. The results 
of these measurements are summarized in Table 1, which associates certain modal 
characteristics of the bridge to the simulated damage scenario. Each scenario is 
labeled to ease the identification of the damage. The first two numbers in the name 
string (scenario label) indicate a specific damage type and the last number the 
damage location, 0, 1, 2 or 3. Table 1 lists 24 scenarios. For each scenario, the car 
moved at 4 speeds, varying from 1.5 m/s to 2.25 m/s at 0.25 m/s. To assess 
repeatability, 32 measurements were taken. In total, we performed 24 (scenarios) x 4 
(speeds) x 32 (iterations) = 3072 trials.  
 
Table 1. Damage scenarios and bridge characteristics.  
  Bridge characteristics 

Scenarios SC- Frequency [Hz] % f shift % Critical damping % dcrit shift 

 

020 7.86 1.06 15.63 0.20 

 

021 7.87 1.30 19.64 0.51 
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022 8.00 2.99 13.46 -0.03 

 

023 8.17 5.20 24.85 0.91 

 

030 8.10 4.27 16.17 -0.24 

 

031 8.30 4.27 21.05 0.61 

 

032 8.40 8.14 19.53 -0.5 

 

033 8.10 6.85 9.98 -0.23 

 

070 7.77 0.00 18.93 0.45 

 

071 7.77 0.00 27.06 1.08 

 

072 7.77 0.00 18.54 -0.42 

 

073 7.77 0.00 23.40 0.79 

 

080 7.67 -1.30 34.52 1.65 

 

081 7.67 -1.30 33.80 1.59 

 

082 7.67 -1.30 35.51 1.72 

 

083 7.70 -0.88 37.03 1.84 

 

110 7.67 -1.30 11.82 -0.09 

 

111 7.67 -1.30 12.28 -0.06 

 

112 7.67 -1.30 11.70 -0.10 

 

113 7.67 -1.30 13.81 0.06 

 

120 7.60 -2.16 11.25 -0.14 

 

121 7.70 -0.88 12.55 -0.04 

 

122 7.77 0.00 12.62 -0.03 

 

123 7.60 -2.16 11.28 -0.14 

 

SIGNAL ANALYSIS AND CLASSIFICATION 
 
The task of distinguishing various bridge conditions can be treated as a signal 
classification problem that requires associating an input signal with a pre-defined 
class label. In this paper, we tested two classification algorithms: Fourier 
discriminant method and sparse representation method. Fourier discriminant method 
searches for the most discriminative frequency features and then uses support vector 
machine (SVM) (Duda et al. 2000) to classify those features. Sparse representation 
method searches for a dictionary to represent each class and assigns the signal to the 
class whose corresponding dictionary gives the minimum representation error. We 
now discuss these in more detail. 
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(1) Classification based on Fourier discriminant method. The basic idea of this 
algorithm is to extract the most discriminative features of the vibrational signal in the 
frequency domain based on their discriminative power, and use those features to 
discriminate among different scenarios. Algorithm 1 as shown below summarizes the 
process. In the training phase, we first compute the discrete Fourier transform (DFT) 
of each signal in the training dataset. Then, we compute the discriminative power of 
each Fourier basis vector by using Fourier discriminant basis vector selection (Cerda 
et al. 2013) and recorde the order of the discriminative power. The k most 
discriminative Fourier basis vectors are then used as features. We then train an SVM 
classifier by using these features and their corresponding known labels. In the testing 
phase, we compute the DFT of each signal in the testing dataset, and then the Fourier 
discriminant features by retrieving the order of the discriminative power learned in 
the training phase. These features are then classified using the SVM classifier trained 
previously. More details can be found in (Cerda et al. 2013). 

 

 
 

(2) Classification based on sparse representation method. Sparse representations 
have been shown to be a strong tool for representing and denoising signals (Wright et 
al. 2009). Although a signal may have high dimensionality, it could have a compact 
representation in a low-dimensional space, which means the signal can be sparsely 
represented without losing information. The motivation to use sparse representations 
when analyzing vibrational signals is that we assume there are only a few key factors 
influencing a vehicle-bridge system. By squeezing most information into a small 
number of elementary signals, we find these key factors. 

Algorithm 1 (Fourier discriminant method) 
Input: labeled training dataset. Output: class labels.  
Training phase 

1. Compute the DFT of each signal in the training dataset. 
2. Compute the discriminative power of each Fourier basis vector by using 

Fourier discriminant basis vector selection and record the order of the 
discriminative power. 

3. Use most discriminative Fourier basis vectors as features 
4. Train SVM classifier by using features from Step 3 and their 

corresponding known labels.  
Testing phase 

1. Compute the DFT of each signal in the testing dataset. 
2. Compute the Fourier discriminant features by retrieving the order of the 

discriminative power that learns in the training phase. 
3. Classify the features by using SVM classifier trained previously. 
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In sparse representations, signals can be represented by using a few 
expansion coefficients in a fixed over-complete dictionary, called sparse coding. The 
representation dictionary is updated by fitting the data, and usually referred to as 
dictionary learning. Each dictionary corresponds to a specific vehicle-bridge system. 
This classification can be done by labeling each signal and representing it by a 
dictionary that gives the minimum representation error. We now explain these 
concepts in more detail. 
 
Sparse coding. Sparse coding computes the expansion coefficients based on the 
given signal and the dictionary. The exact solution is known as a nondeterministic 
polynomial hard problem, and thus, approximate algorithms are considered instead. 
Here, we use the orthogonal matching pursuit (OMP) algorithm (Chen et al. 1989). 
OMP is a greedy algorithm that selects the basis vector from a dictionary 
sequentially. In each iteration, the dictionary finds the best basis vector to fit the 
given signal and leaves the residue for the next iteration. Although it cannot provide 
a global optimum, it only involves the computation of inner products between the 
signal and basis vector, leading to a computationally efficient algorithm.  
 

 
 

Dictionary learning. Dictionary learning updates the dictionary iteratively to reach 
the goal of expanding the given signal sparsely. Unlike traditional transforms, such 
as Fourier and wavelets, the dictionary in sparse representation is flexible and can be 
learned by fitting itself to the given signals. Some state-of-the-art algorithms are 
methods of optimal directions (MOD) (Engan et al. 1999) and K-SVD (Aharon et al. 

Algorithm 2 (Sparse representation) 
Input: labeled training dataset. Output: class labels.  
Training phase 

1. Initialize a dictionary for each class and use OMP to represent the each 
signal in the training dataset. 

2. For each class, update the dictionary to fit to training signals by using 
K-SVD. 

3. Iterate Steps 1 & 2 in turn until the reconstruction error is below a given 
threshold and record the dictionaries for all classes. 

Testing phase 
1. Represent each signal in the testing dataset on the dictionaries for all 

classes by using OMP. 
2. Label each signal to the class that the corresponding dictionary gives the 

minimum representation error. 
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2006), which we use in this paper. It is designed to be a generalization of the 
K-means algorithm (MacQueen and J. B. 1967) and work towards minimizing an 
overall objective function. 

We perform sparse coding and dictionary learning to get the dictionary and 
the representation coefficients for the given signals. Each signal is then assigned to 
the class for which the corresponding dictionary provides the minimum 
representation error. This algorithm is summarized in Algorithm 2.  
 
CLASSIFICATION RESULTS AND DISCUSSION 
 
We set up a similar damage location classification experiment in our previous work 
(Cerda 2012). To make the experiments more realistic, we lower the training ratio 
(the ratio of the number of the training samples and all samples) from 95% to 50%. 
Figures 4 and 5 shows the accuracies of classifying damage location for six different 
types of damage clusters, SC02-, SC03-, SC07-, SC08-, SC11- and SC12-, for the 
Fourier discriminant method and sparse representation method, respectively.  Each 
type of a damage cluster has four different location scenarios indicated by the last 
number in the name string as in Table 1. The accuracies in the figures are the 
averaged accuracies over four speeds and all iterations. The red vertical bar 
represents the corresponding standard deviation. We show results associated with the 
transducers mounted on the bridge and the sensors mounted on the car’s suspensions 
and wheels. On average, the sparse representation method provides about 10% 
higher accuracy than the Fourier discriminant method. The lowest accuracies for 
both methods are for SC08-; from Table 1, we see that the difference among the four 
scenarios in SC08- is only changing the locations of the two dampers, and only one 
out of four scenarios changes the frequency of the vibration by a small amount. Thus, 
these variations cannot be detected easily. Even then, sparse representation method is 
still able to improve accuracy by about 10% compared to Fourier discriminant 
method.  Overall, we conclude that by using the sparse representation method, most 
of the accuracies are above 70% and all of them are above 60%. 

We also evaluated the effect of speed on the classification accuracies of the 
two algorithms. Figure 6 shows the classification accuracy of both algorithms as a 
function of the vehicle speed. Two interesting trends are visible: (1) We see higher 
classification accuracy when using sparse representations as previously noted. (2) 
We observe a decrease in the classification accuracy as the speed increases. This 
accuracy decrease can be explained as follows: as the speed goes up, the length of 
the analyzed signal is shorter and therefore less information from the bridge can be 
extracted. Also, as the excitation frequency increases, the vehicle may excite higher 
modes that may be less sensitive to the presence of the simulated damage.  
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Figure 4. Classification accuracy using Fourier discriminant method. 

 

 
Figure 5. Classification accuracy using sparse representation method. 

 

 
Figure 6. Classification accuracy as a function of speed. 
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CONCLUSIONS 
 
We presented the latest advancement of an ongoing project at Carnegie Mellon 
University and at the University of Pittsburgh that aims at developing a holistic 
approach for the indirect health monitoring of bridges. We compared a proposed 
novel classification algorithm with a previous method (Cerda 2012). The proposed 
method, using sparse representations, was tested on vibrational signals collected 
from a laboratory-scale bridge model, which simulates the vehicle-bridge interaction. 
The results are compared to Fourier discriminant method that has been used 
previously. We found that the sparse representations allows for higher classification 
accuracy when compared with the Fourier discriminant method, and that the 
accuracy of each algorithm is inversely proportional to the speed of the car.  
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ABSTRACT

We present a multiresolution classification framework with
semi-supervised learning for the indirect structural health mon-
itoring of bridges. The monitoring approach envisions a sens-
ing system embedded into a moving vehicle traveling across
the bridge of interest to measure the modal characteristics of
the bridge. To enhance the reliability of the sensing system,
we use a semi-supervised learning algorithm and a semi-su-
pervised weighting algorithm within a multiresolution clas-
sification framework. We show that the proposed algorithm
performs significantly better than supervised multiresolution
classification.

Index Terms— multiresolution classification, semi-super-
vised learning, bridge structural health monitoring

1. INTRODUCTION

Bridge structural health monitoring (SHM) has been an in-
tense research area for some time. Traditional, direct ap-
proaches, are to collect acceleration signals by installing sen-
sors on a bridge. The drawback of such direct approaches is
that they require a sophisticated and expensive electronic in-
frastructure with installation, maintenance and power support.
Recently, indirect approaches have been proposed [1, 2, 3],
suggesting the use of moving vehicles to collect data from
accelerometers inside the vehicles, a far less expensive and
complex solution (see Figure 1).

In indirect approaches less data is collected and the data
is noisier (as it is farther from the source); thus, data analy-
sis plays a crucial role. Moreover, although it is easy to get
a large number of data samples, it is expensive to label them
(which involves physically inspecting the bridge and deter-
mining its health); thus, very few data samples are actually

The authors gratefully acknowledge support from the NSF through
awards 1130616 and 1017278, as well as CMU Carnegie Institute of Tech-
nology Infrastructure Award.

Fig. 1: Indirect bridge SHM system. Acceleration signals are
collected from a moving vehicle and sent to a classification
system, which identifies the bridge status and reports it to a
transportation authority.

labeled. This real-world constraint turns the indirect bridge
SHM into a semi-supervised classification problem.

We propose a novel semi-supervised classification frame-
work that takes advantage of supervised multiresolution clas-
sification (MRC) [4], which extracts hidden features in lo-
calized time-frequency regions (subbands), and a semi-super-
vised learning algorithm [5], which uses both labeled and
unlabeled samples. This is followed by a semi-supervised
weighting algorithm that combines information from all the
subbands of all the signals to make a global decision.

The outline of the paper as follows: Section 2 states the
problem and gives a brief overview of MRC and semi-super-
vised learning; Section 3 describes our proposed algorithm,
which is validated in Section 4 on acceleration signals col-
lected from a lab-scale bridge-vehicle dynamic system. Sec-
tion 5 concludes with pointers to future directions.

2. BACKGROUND AND PROBLEM FORMULATION

Classification. Our task in bridge SHM is to label acceler-
ation signals as belonging to different classes of structural
change or damage, a task known as classification [6]. Let
X = {x(i) ∈ RN}ni=1 be the given dataset with n signals,
l labeled and u unlabeled; Y = {y(i) ∈ {1, 2, . . . , C}}`i=1
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i sample index
X = {x(i)} input dataset i = 1, . . . , n

Y = {y(i)} ground-truth labels for L i = 1, . . . , `

L = {(x(i), y(i))} labeled dataset i = 1, . . . , `

U = {x(i)} unlabeled dataset i = `+ 1, . . . , n
F feature extraction function
f (i) feature vector i = 1, . . . , n

q(i) ground-truth vector i = 1, . . . , `

ŷ(i) estimated label i = `+ 1, . . . , n

q̂(i) confidence vector i = `+ 1, . . . , n

Ŷ = {ŷ(i)} estimated labels for U i = `+ 1, . . . , n

Table 1: Parameters used in a generic classification system.

the ground-truth labels for the labeled dataset L = {(x(i) ∈
X , y(i) ∈ Y)}`i=1; and U = {x(i) ∈ X}ni=`+1 the unla-
beled dataset. Then, the problem can be formulated as de-
signing a map that associates an input signal to a class la-
bel with a certain probability. Typically, a generic classifi-
cation system will have an intermediate block between the
two, a feature extractor F (FE), aimed at reducing the di-
mensionality of the problem; this is followed by a classi-
fier C. The outputs of the classifier are the estimated labels
Ŷ = {ŷ(i) ∈ {1, 2, . . . , C}}ni=`+1 for the unlabeled dataset
U . If the classifier is supervised, we denote the block by SC
(see Figure 2).

Note that a label can also be viewed as a posterior prob-
ability vector q̂ of size C × 1, where the cth component of
the vector, q̂(c), is the probability that a sample belongs to
the cth class. Since q̂ gives a confidence to an assigned label,
we name it a confidence vector. The confidence vector for a
labeled sample is called the ground-truth vector, q.

MRC. MRC is a supervised classification framework (see
Figure 2), originally proposed for bioimaging applications [4,
7, 8]. It decomposes images into S localized space-frequency
subbands using wavelet packets, a data-adaptive MR techni-
que [9]. In each subband, MRC extracts features, classifies
them, and produces a local classification decision. A super-
vised weighting algorithm combines all local decisions into a
global decision (see Algorithm 1).

Fig. 2: Supervised MRC decomposes images into localized
space-frequency subbands using wavelet packets (MR), fol-
lowed by feature extraction (FE) and supervised classification
(SC) in each subband, yielding a local classification decision.
A supervised weighting algorithm (SW) combines all local
decisions into a global decision.

Algorithm 1 MRC
Input X = {x(i)} input dataset
Output Ŷ = {ŷ(i)} estimated labels for X

s subband index s = 1, 2, . . . , S
Ds MR function
a
(i)
s MR coefficients
f
(i)
s feature vector
Cs supervised classification function
q̂
(i)
s confidence vector
W supervised weighting function
w weighting vector ‖w‖1 = 1

q̂(i) confidence vector after weighting

MRC(X )

MR a
(i)
s = Ds(x(i))

FE f
(i)
s = F(a(i)s )

SC q̂
(i)
s = Cs(f (i)s )

SW q̂(i) =W([q̂
(i)
1 , q̂

(i)
2 , . . . , q̂

(i)
s ])

ŷ(i) = argmaxc {q̂(i)(c)}
return Ŷ

(Only parameters different from Table 1 are listed.)

MRC provides various options: the choice of the filter
bank D used in the MR block [10], the feature extraction
method F used in the FE block, and the supervised classi-
fier C used in the SC block. In the sth subband, the function
producing the filter bank output is denoted by Ds and the su-
pervised classifier by Cs (different classification boundaries
in different subbands). To combine the subbands’ classifi-
cation decisions, we collect subbands’ individual confidence
vectors q̂(i)s into a C × S confidence matrix Q̂(i), and define
the weighting functionW as

q̂(i) = W(Q̂(i)) = Q̂(i)w,

where the weighting vector w, which assigns weight to each
subband according to its discriminative power, is chosen by
optimizing a supervised weighting objective function

w = argmin
ω
{
∑̀
i=1

‖q(i) − Q̂(i)ω‖}. (1)

The optimization is performed over all labeled data samples
with the constraint that ‖w‖1 = 1.

Semi-Supervised Learning. Semi-supervised learning is
a technique for training classifiers with both labeled and un-
labeled data that assumes that unlabeled data can provide dis-
tribution information to build a stronger classifier. It includes
generative mixture models with expectation maximization, co-
training, transductive support vector machine and graph-based
approaches [5]; we focus here on label propagation [11, 12],
one of graph-based approaches. It assumes that, while the
measured samples exist in a high-dimensional space, they are
distributed in a low-dimensional manifold. Based on this, a
graph is constructed to analyze the distribution of all sam-
ples; by understanding how labels propagate on this graph,
classification can be achieved (see Algorithm 2).
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Algorithm 2 Label propagation
Input X = {x(i)} input dataset
Output Ŷ = {ŷ(i)} estimated labels for X

A adjacency matrix
ρ local measurement
σ scaling coefficient
P transition matrix
t transition time

Label propagation(X )

Construction Aij = exp (−ρ(x(i), x(j))/σ)
Normalization P = D−1A, Dii =

∑
j Aij

Initialization Q̂, with Q̂y(i),i = 1, i = 1, . . . , `

Diffusion Q̂← Q̂P t

Labeling ŷ(i) = argmaxc{q̂(i)(c)}
return Ŷ

(Only parameters different from Algorithm 1 are listed.)

3. PROPOSED ALGORITHM

MRC analyzes data to uncover hidden information; in its orig-
inal form, it uses supervised classification, and can thus train
on labeled samples only. When the labeled set is small or con-
tains improperly labeled samples, the classification bound-
ary and the weights assigned to subbands can be unreliable.
Semi-supervised learning, on the other hand, uses the en-
tire dataset to help classification, but works on one resolution
level only. We thus propose to merge these two frameworks
and gain the best of both worlds: a semi-supervised MRC.

Semi-Supervised Classification. The MR and FE blocks
from Figure 2 work as before. The first change is that the su-
pervised classifier block, SC, is replaced by a semi-supervised
one, SSC (see Figure 3), using both labeled and unlabeled
samples to make a labeling decision in each subband.

Semi-Supervised Weighting. We now explain how to
weigh decisions from all the subbands to get a global decision
in a semi-supervised manner. Labeled samples contribute to
weighting directly by fitting their confidence vectors from all
the subbands to the ground truth; unlabeled samples cannot do
the same as they do not have the ground truth. We could use
Shannon entropy to measure the confidence of labeling an un-
labeled sample; if the entropy is small (less uncertainty, high
confidence), it is easy to assign a label to the sample, and vice
versa. In the label propagation algorithm, Algorithm 2, we
label each sample by finding the largest element in its confi-
dence vector; we could thus normalize each confidence vector
to sum to 1 to measure its entropy. We encounter a problem,
however; for example, let q̂(1) =

[
0.5 0.5 0

]T
and q̂(2) =[

0.5 0.25, 0.25
]T

be confidence vectors. While we can
label q̂(2) as Class 1 but cannot make a decision for q̂(1), the
entropy measure tells us that we can label q̂(1) with higher
confidence (less uncertainty) because its entropy is lower. To
resolve this issue, we define a new uncertainty measure,

M(q̂) = H(q̂) (χd>T + λ(d)χd≤T ),

Algorithm 3 Semi-supervised MRC
Input X = {x(i)} input dataset
Output Ŷ = {ŷ(i)} estimated labels for X

C semi-supervised classification function
W semi-supervised weighting function

SSMRC(X )

MR a
(i)
s = Ds(x(i))

FE f
(i)
s = F(a(i)s )

SSC q̂
(i)
s = Cs(f (i)s )

SSW q̂(i) =W([q̂
(i)
1 , q̂

(i)
2 , . . . , q̂

(i)
s ])

ŷ(i) = argmaxc {q̂(i)(c)}
return Ŷ

(Only parameters different from Algorithm 1 are listed.)

Fig. 3: Semi-supervised MRC. Classification and weighting
algorithm in Figure 2 are replaced with their semi-supervised
versions so that unlabeled data can contribute to classification.

where H(q̂) is the entropy of confidence vector q̂, χI is the
indicator function of an interval I , d = |q̂(1) − q̂(2)| with
q̂(1), q̂(2) the first and second largest element in q̂, respec-
tively, T is the threshold, and λ(d) is a penalty function that
is large when the first and second largest elements are close.
Let M (i)

s be the uncertainty of the sth subband to label the ith
sample. Since entropy is additive, the total uncertainty of a
subband when classifying unlabeled samples is the mean un-
certainty over all the unlabeled samples in this subband. Thus,
the total uncertainty of the sth subband is

ms =
1

u

l+u∑
i=l+1

M (i)
s .

Define the normalized confidence of the sth subband as

gs =
e−βms∑S
k=1 e

−βmk

,

where β is the decaying coefficient. When the uncertainty of
a subband is large, the confidence is small and the subband
gets assigned a low weight, and vice versa. This confidence
is the discriminative power of a given subband.

To combine confidences of all subbands into a global de-
cision, we choose the weighting vector by optimizing a semi-
supervised weighting objective function,

w = argmin
ω
{α
`

∑̀
i=1

‖q(i) − Q̂(i)ω‖

+ (1− α)‖ω − g‖}, (2)
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wherew is as defined before and α is the labeling ratio defined
as α = `/(`+u). The first term in (2) is exactly (1), represent-
ing the contribution from labeled samples. In the second term,
we fit weights to subbands’ confidences, representing the con-
tribution from the unlabeled samples. We use the labeling ra-
tio to balance these two terms; when we have a large number
of labeled samples, the first term dominates, otherwise, the
second one does. Since this is a convex optimization problem,
it is numerically efficient to solve. After getting the weights,
we can get the global decision as ŷ(i) = argmaxc q̂

(i)(c),
where q̂(i) = Q̂(i)w (see Algorithm 3).

4. EXPERIMENTAL RESULTS

Dataset. We built a lab-scale bridge-vehicle dynamic system.
put a sensor on a vehicle, and let it move across the bridge. We
collected 30 samples for each of 13 different bridge damage
scenarios, 8 different speeds and 2 different vehicles [13].

Experimental Setup. Given a specific vehicle driven at a
specific speed, we want to classify 13 scenarios, in particular
with a low labeling ratio. We consider 16 vehicle-speed cases
for each of which there are 30 samples per 13 of the scenar-
ios, and vary the labeling ratio as 10%, 30%, 50%, 70% and
90%; the final accuracy is the average over the 13 scenarios.
We compare the performance of our proposed algorithm to
the supervised MRC as well as the label propagation algo-
rithm. We choose a Coiflet filter bank [14] with 4 levels in
the MR block, principal component analysis in the FE block,
naive Bayes, logistic regression and radius kernel SVM in the
SC block [15], and label propagation in the SSC block. For
label propagation, we choose the local measurement ρ to be
the cosine distance, scaling coefficient σ = 1, transition time
t = 8. For computational efficiency, we construct a k = 4
regular graph (each vertex connects to 4 neighbors). In semi-
supervised weighting function, we choose penalty threshold
T = 0.02 and the penalty term λ(d) = 1 + 5(d/T − 1)2. We
performed a 30-fold cross-validation and found that parame-
ters do not influence the results too much.

Results. Table 2 compares the performance of different
classifiers with the low labeling ratio of 10%. We use V for
vehicle, S for speed, SMRC for supervised MRC, LR for
logistic regression, NB for naive Bayes, KSVM for kernel
SVM, LP for label propagation, SSMRC for semi-supervised
MRC and LP-W for label propagation with a semi-supervised
weighting algorithm in (2). We see that when the labeling ra-
tio is low, supervised MRC performs poorly, label propaga-
tion works well, and semi-supervised MRC works the best.

Figure 4 shows the dependence of classification accuracy
on the labeling ratio for 2 vehicles averaged across 8 speeds.
Both figures show similar trends; as the labeling ratio de-
creases, accuracy drops sharply for all algorithms except for
semi-supervised MRC, which consistently outperforms them
all and whose performance stays relatively flat even at very
low labeling ratios.

V S SMRC LP SSMRC
LR NB KSVM LP-W

1 1 47.8 62.4 84.1 81.3 99.8
2 57.0 62.9 84.5 86.2 99.9
3 52.4 60.9 84.7 86.0 99.4
4 66.2 63.2 89.1 90.8 99.9
5 48.0 46.5 81.8 85.2 94.5
6 34.2 45.7 74.8 86.0 93.5
7 37.4 46.8 66.0 69.0 72.2
8 38.8 43.4 59.0 75.9 82.5

2 1 40.9 58.5 76.2 75.6 85.9
2 37.7 57.7 61.6 68.3 80.5
3 58.1 65.6 81.3 81.7 94.7
4 46.7 56.2 73.1 80.0 87.3
5 47.9 59.0 72.5 76.5 88.1
6 44.4 54.5 73.3 78.6 83.8
7 48.3 63.7 76.9 83.3 88.2
8 54.2 62.3 79.1 90.4 93.8

Table 2: Accuracy comparison of Vehicles (V) 1 and 2, with
Speeds (S) 1, 2, . . . , 8, and labeling ratio of 10%.

(a) Vehicle 1. (b) Vehicle 2.

Fig. 4: Accuracy as a function of the labeling ratio.

5. CONCLUSIONS AND FUTURE WORK

We presented a framework and algorithm for indirect bridge
SHM. Compared to our previous work [2, 3], we added two
new ingredients: (1) We analyze signals in MR spaces, in-
stead of only in frequency domain. (2) We focus on semi-su-
pervised learning setting, instead of supervised learning. Our
system combines MR techniques and semi-supervised learn-
ing by using a semi-supervised weighting algorithm. The new
system performs consistently better than supervised MRC,
and significantly better when the labeling ratio is small.

Some near-future tasks are to use more features in each
time-frequency subband, prune wavelet packet tree to achieve
faster implementation, use stronger semi-supervised classi-
fiers and test the framework on real-world bridge-vehicle dy-
namic system.

A61



6. REFERENCES

[1] Y. B. Yanga, C. W. Lina, and J. D. Yaub, “Extracting
bridge frequencies from the dynamic response of a pass-
ing vehicle,” Journ. of Sound and Vibration, pp. 471–
493, May 2004.

[2] F. Cerda, J. Garrett, J. Bielak, R. Bhagavatula, and
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1 INTRODUCTION  

In this paper, we explore whether the acceleration 
signals from vehicles moving over a bridge can be 
used for diagnostic purposes. The acceleration sig-
nals from the bridge and the vehicle are affected 
mainly by three different factors. These factors are: 
the dynamic properties of the bridge structure; the 
motion characteristics of the passing vehicle; and the 
dynamic properties from the vehicle. 

Traditionally, the Structural Health Monitoring 
(SHM) community uses the data measured directly 
from a structural system for diagnostic purposes. In 
such an approach, a number of sensors are deployed 
on the structure. We refer to this as a direct SHM 
approach. In contrast, the use of data not recorded 
directly from a structure is referred to as an indirect 
SHM approach (Lin et al. 2005, Cerda et al. 2010). 
The top block in Figure 1 shows this distinction in 
terms of the data acquisition approach. 

There are several practical reasons that drive our 
research on the indirect SHM approach. There is a 
need in most countries, and especially in the US, to 
monitor a large bridge stock in a reliable, objective 
and economically feasible way. The traditional di-
rect SHM approach requires installation, power and 
maintenance of an expensive electronic infrastruc-
ture on top of the physical bridge infrastructure.   

The indirect approach can gain leverage by using 
the equipment already located on board newer mod-
els of vehicles, or on a fleet of vehicles that can be 
equipped with sensors to collect the desired infor-
mation as they undergo their daily routines.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 1. Block diagram of proposed system 

 
The indirect approach, however, has the disad-

vantage that the data are influenced by the motion of 
the vehicle and its dynamic properties.  

Through the use of an experimental setup which 
is described in the next section, we collected accel-
eration data from a particular scale bridge structure 
and a particular scale vehicle in order to compare the 
indirect and direct methods. These two data acquisi-
tion approaches are depicted in the first block of 
Figure 1 since both approaches for SHM were tested 
as part of the experiments described in this paper. As 
far we know, such comparisons have not been car-
ried out previously.  

Indirect structural health monitoring in bridges: scale experiments 

F. Cerda1,, J.Garrett 1, J. Bielak 1, P. Rizzo 2, J. Barrera 1, Z. Zhuang 1, S. Chen 1, M. McCann 1 
& J. Kovačević 1 
1 Carnegie Mellon University, Pittsburgh, Pennsylvania, USA 
2 University of Pittsburgh, Pittsburgh, Pennsylvania, USA 

ABSTRACT:  

In this paper, we use a scale model to experimentally validate an indirect approach to bridge structural health 
monitoring (SHM). In contrast to a traditional direct monitoring approach with sensors placed on a bridge, the 
indirect approach uses instrumented vehicles to collect data about the bridge. Indirect monitoring could offer 
a mobile, sustainable, and economical complementary solution to the traditional direct bridge SHM approach. 
Acceleration signals were collected from a vehicle and bridge system in a laboratory-scale experiment for 
four different bridge scenarios and five speeds. These signals were classified using a simple short-time Fouri-
er transform technique meant to detect shifts in the fundamental frequency of the bridge due to changes in the 
bridge condition. Results show near-perfect detection of changes when this technique is applied to signals col-
lected from the bridge (direct monitoring), and promising levels of detection when one uses signals from sen-
sors on the vehicle (indirect monitoring) instead of those recorded on the bridge itself. 
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To test the detection capability of the different 
approaches, we created four experimental scenarios. 
The first scenario considers the structure in a pristine 
while in each of the other three, we added mass to 
the bridge to simulate damage. Two different scenar-
ios are compared in each test. A pristine one, and a 
second one with the induced change to modify its 
dynamic properties. The second block in Figure 1 
shows the two scenarios considered.  

The data from the two scenarios is classified by 
means of a short-time Fourier transform-based 
change detection scheme aimed at detecting changes 
in the fundamental frequency of a bridge. We report 
the results of this work in terms of the detection rate. 
This quantity reflects the fraction of cases in which 
an actual change is detected. These two steps are 
represented in the last two blocks in Figure 1. 

Previous work includes a theoretical solution for 
the simplified case of a single degree of freedom os-
cillator travelling over a beam structure (Yang et al. 
2004). In a subsequent paper, Lin et al. (2005) were 
able to experimentally determine the natural fre-
quency of an actual bridge structure by analyzing the 
acceleration signals of a passing vehicle.  

An experimental setup was used by Kim to simu-
late the vehicle-bridge interaction and identify dam-
age scenarios (Kim et al. 2010). A particular meth-
odology, referred as the “pseudo static approach”, 
was used to identify damage using vibration data 

taken from the bridge structure at different locations 
along the bridge span (¼, ½ and ¾ of span length). 
This damage identification approach shows good ac-
curacy at determining a change of stiffness of the 
bridge. Being inspired by this experimental work, 
we decided to further pursue the identification of 
changes in the bridge structure using the indirect ap-
proach.  

In this paper, we concentrate on studying the in-
fluence of different vehicle velocities and sensor lo-
cations on the classification accuracy of different 
scenarios. The scenarios are produced in a laborato-
ry using a scaled physical model of a moving vehi-
cle over a simply supported bridge. The data is ob-
tained through multiple runs of the vehicle over the 
structure. Hereafter, we refer to this particular exper-
imental setup as the “scale bridge structure”.  

The following section contains a description of 
the experimental setup. This description includes the 
structural model, the vehicle model, the vehicle mo-
tion control system, and the data acquisition equip-
ment. The third section contains a description of the 
different scenarios that were compared in the detec-
tion experiments. In the fourth section, we describe 
the Fourier transform-based change detection ap-
proach, and in the fifth section, we present and dis-
cuss preliminary results. Our initial conclusions are 
given in the last section. 

 Figure 2. Structural components and vehicle from experimental setup A64



 

 

2 EXPERIMENTAL SETUP  

The experimental setup simulates a passing vehi-
cle over a simply supported bridge structure. The 
vehicle-bridge interaction is studied by recording 
accelerations at four different locations on the vehi-
cle as well as at the midspan of the bridge. The 
whole system consists of several components: 1) the 
mechanical components consisting of the bridge, its 
approaches, and the vehicle, 2) the vehicle motion 
control system and 3) the data acquisition system.  

2.1 Mechanical components 

An overview of the mechanical components is 
given in Figure 2 (a). It consists of an acceleration 
ramp and a deceleration ramp that provide the run-
ning path for the vehicle, and a simply supported 
bridge. The acceleration and deceleration ramp are 
made from C Shape aluminum extrusions (2 x 1 x 
1/8 in). They are supported on each end by alumi-
num slotted extrusions. The slotted extrusion shown 
in Figure 2 (b) allows one to fix the ramps at differ-
ent locations along the slots. This flexibility will al-
low further research that will explore placing the 
ramps in the right or left lanes to study the effect of 
traffic-induced torsion.  

2.1.1 Vehicle 
The vehicle used on the experiment has two axles. A 
scheme of the vehicle is shown in Figure 2(c). The 
vehicle has four independent wheel suspensions. In 
this paper the vehicle properties are maintained at 
constant values shown in Table 1. The dynamic 
properties of the vehicle were obtained by capturing 
the dynamic response after an impulse force is ap-
plied.  
 
Table 1. Vehicle properties ________________________________________  
Properties with added mass   ________________________________________ 
Bouncing  frequency         5  Hz 
Front damping           5.9% 
Rear damping        5.9% 
Extra weight at midspan    5  lb) ________________________________________ 

 
The suspension system is designed so it can be 

easily modified to simulate different vehicle charac-
teristics. For example, a heavily loaded 2 axle vehi-
cle can be simulated by replacing the spring in the 
suspension shown in Figure 2(c) with a stiffer 
spring. 

2.1.2 Bridge 
The bridge structure is composed of an aluminum 

plate and two aluminum angles that act as beams. A 
cross-sectional view of the bridge is shown in Figure 
3. 

. 

 

Figure 3. Bridge section 
 
The bridge deck also has two angles on top that 

are used as rails for the vehicle. The properties of 
the bridge are shown in Table 2. 

 
Table 2.  Bridge properties ______________________________________  
Deck dimensions       8 x 2 x 1/8 in 
Beams dimensions      8 x 1 x 1/4 in 
Fundamental frequency    7.18 Hz 
Damping         1.35% ______________________________________ 

2.2 Motion control 

 A set of National Instrument® components was 
configured to reliably control the speed of the vehi-
cle. The individual components are shown in Figure 
4.  The PXI 7342 motion controller commands the 
NI 70360 driver that provides the signals to a double 
shaft stepper motor, model NEMA 34. The encoder 
attached to the shaft of the motor provides position 
feedback and closes the loop for the motion control 
system.  

Figure 4.Motion control equipment scheme (Images from 
www.ni.com) 
 

A list of the individual components is shown in 
the Table 3. 

 
Table 3. Motion equipment components ______________________________________________ 
Driver      NI 70360  
Motor     NEMA 34 
Motion Controller NI PXI 7342 
Interface    UMI 7772   _____________________________________________ 

2.3 Data acquisition equipment 

The data acquisition system for the moving vehi-
cle and bridge is wireless. Figure 5 shows the Mi-
crostrain® acceleration sensor nodes that communi-
cate to a base directly connected to the PXI 
controller. The data is transmitted in packets to the 
base after digitalization. The resolution of the accel- A65



 

 

eration data is 1.5mg RMS. The resolution of the 
digitization is 12 bit. 
 The components used in the data acquisition pro-
cess are described in Table 4. 
 
Table 4. Data acquisition components _____________________________________________ 
Acceleration nodes   MicroStrain G-Link mXrs 2G    
Wireless base MicroStrain WSDA mXrs  _____________________________________________ 
 

Figure 5. Data acquisition equipment 
 
The sensor on the bridge is located at the center 

of the midspan, as depicted in Figure 2 (a) by the 
node labeled N5. The vehicle sensor locations are 
labeled as N1, N2, N3, and N4 in  Figure 2 (c). Ta-
ble 5 lists the sensor locations and the corresponding 
node names shown in Figure 2 (a) and (c). 

 
Table 5. Node location ______________________________________________ 
Node Name    Node location ______________________________________________ 
N1     Front Suspension Front  
N2     Left Wheel front 
N3     Right Wheel front 
N4     Rear Suspension  
N5     Bridge _____________________________________________ 

The nodes located at the top of the suspension 
shaft, N2 and N3, transmit the vertical motion at the 
wheel level through the suspension shaft. 

3 EXPERIMENTAL SCENARIOS 

 In the work of Yang et al (2004), the authors de-
rived an explicit analytical solution for the interac-
tion of a simply supported beam with a traveling 
single degree of freedom oscillator. In this solution, 
the main interaction parameters are defined as S and 
: (1) S = v/Lb;(2)   = b/v, where S is a nor-
malized vehicle velocity; v = vehicle velocity; v = 
the vehicle (oscillator) vertical natural frequency; L 
= length of beam, and  b= fundamental natural fre-
quency of the beam.  

We explored the influence of these parameters by 
inducing changes to the bridge structure and running 
the moving vehicle at different travelling speeds 
over the bridge. The bridge was changed by adding 
mass at the midspan. Figure 6 shows the procedure 
by which different amounts of mass were clamped at 
the midspan of the bridge. For our structure, b is 
the fundamental natural frequency of the complete 
bridge system. 

The different conditions of the bridge and the cor-
responding changes that they produce in terms of the 
fundamental frequency of the bridge are summarized 
in Table 6. 
 
Table 6. Bridge scenarios ______________________________________________ 
Scenario Total added mass    fundamental freq 
    (lbs, % of bridge mass)  (Hz) ______________________________________________ 
1     0,   0%       7.18 
2     6,  16%       6.28 
3     10, 27%       5.93 
4     14, 38%       5.57 ______________________________________________ 
 

Figure 6. Added mass to the midspan of the experimental 
bridge structure.  

 
The speed of the vehicle under the different 

bridge scenarios ranged from 1 m/s to 3 m/s at 0.5 
m/s intervals. A total of 5 different speeds were 
studied.  
 The range of scenarios and speeds can be plotted 
in terms of the parameters S and  as depicted in 
Figure 7. 
 
 

Figure 7. S and µ cases studied experimentally.  A66



 

 

 
Each of the 20 dots in Figure 7 reflects a data set 

composed of 60 runs of the vehicle over the bridge. 
We compare the variation of the different data sets 
by performing detection experiments, as described 
in the next section. 

4 DETECTION OF STRUCURAL SCENARIOS 

The detection task is as follows. First, we use a 
training set of acceleration signals from a vehicle 
traveling over a known-to-be-healthy (pristine) scale 
bridge structure to set a baseline for the system. We 
then use a test set of different acceleration signals 
from the same bridge under different scenarios, to 
determine if the detection approach can detect 
whether the bridge has sustained a significant 
change since the collection of the training set. For 
the specific scenarios we are exploring, note that the 
induced change causes a decrease in the fundamen-
tal frequency of the bridge. We therefore hypothe-
size that a classification scheme based on detecting 
shifts in this frequency should work well. 

Figure 8 shows a typical signal obtained through 
the experimental setting and the corresponding por-
tion of the signal used for the classification, which is 
when the vehicle is completely between the supports 
of the bridge. 

Figure 8 Original acceleration signal. 

4.1 STFT Calculation.  

To detect changes in the bridge, we first extract 
the frequency spectrum of the bridge/vehicle system 
from an acceleration signal. As seen in Figure 9, tak-
ing the Fourier transform of the acceleration signal 
results in a frequency spectrum with a large amount 
of noise and little consistency between runs; this is 
because the time-domain signal contains numerous 
spikes and other transient signals. We instead com-
pute the spectrogram of the acceleration signal with 
a short-time Fourier transform (STFT) with overlap-
ping windows that are 250 samples in length. The 
spectrogram is shown in Figure 10. We then average 
the spectrogram over time, creating a frequency 
spectrum as depicted in Figure 11. This technique 
exploits the fact that the frequencies of interest are 
not transient, while much of the noise is. The time 

averaging should therefore remove noise and pre-
serve the signal. 

Figure 9. Fourier transform of an acceleration signal. 
 

Figure 10. Acceleration spectrogram. 
 

Figure 11. Spectrogram averaged across time. 

4.2 Classification System.  

For the training of our classification system, the 
data from each scenario at a particular speed is di-
vided into training and testing sets. The spectrum of 
each signal in the training set is calculated first, then 
all such signals are averaged across frequency. The 
result is a single reference spectrum representing the 
undamaged bridge. To determine whether a testing 
set of signals indicates a change in the structure, the 
spectrum is computed for each signal in the testing 
set and again averaged across frequency to create a 
signal candidate spectrum for each scenario at a par-
ticular speed. The portion of each spectrum corre-
sponding to the range 3.5-13 Hz is then extracted. 
The averaged candidate spectrum with the corre-
sponding extracted section is shown in Figure 12.  

The considered range is where our theoretical 
calculations suggest the fundamental frequency of 
the bridge should appear, and experimental explora- A67



 

 

tion confirms it. Finally, the trimmed reference and 
candidate spectra are shifted to be zero mean and 
their cross-correlation is computed. If the maximum 
value of the cross-correlation occurs when the spec-
tra are not shifted, then the test set is labeled as un-
changed. If the maximum value occurs at a shifted 
location, the test set is labeled as changed. 

Figure 12. Extracted candidate spectrum of unchanged scenar-
io. 

 
The plots in Figure 13 show the correlation coef-

ficients of two candidate spectrums compared 
against the unchanged reference spectrum. The cor-
relation for the unchanged candidate has a strong 
peak at the zero shift location, indicating that it 
matches the reference spectrum. The peak in the cor-
relation for the changed candidate spectrum is at a 
shifted location. 

Figure 13. Cross correlation between candidates for the un-
changed and changed scenario (SC3) with respect to the un-
changed reference spectrum. 

5 RESULTS AND DISCUSSION 

The proposed detection approach was tested us-
ing a data set generated with the experimental setup 
previously described. We now show some of the 
preliminary findings of this approach and the corre-
sponding results.  

5.1 Dataset.  

Our dataset consists of 60 acceleration signals 
from each of the five sensors (front suspension, back 
suspension, left wheel, right wheel, and bridge) col-
lected under four different change scenarios (un-
changed, +6 kg, +10 kg, +14 kg) and vehicle speeds 
(1 m/s, 1.5 m/s, 2 m/s 2.5 m/s 3 m/s). The signals 
were sampled at 256 Hz and vary in length from 1 to 
3 seconds. The variation in signal length occurs be-
cause of the time it takes the vehicle to travel over 
the bridge at different speeds. 

5.2 Experimental Setup. 

To evaluate our classification system, we per-
formed a series of cross-validation experiments. We 
first fixed a group size, N = 3, 4, …, 35. For each 
speed and each sensor, we randomly selected 20 
signals from the undamaged bridge and used them as 
our training set. We then randomly selected N sig-
nals from each of the changed scenarios and used 
them to form test sets. Additionally, we selected N 
of the remaining 40 signals from the unchanged sce-
nario and formed a test set with them. This random 
selection was repeated in a 1,000-fold validation. 

For each scenario, we report the detection rate as 
the percentage of folds in which the test set was la-
beled as changed. For the three changed scenarios, 
the detection rate represents the true positive rate 
(TPR), while for the unchanged bridge, it represents 
the false positive rate (FPR). A perfect system 
would have a TPR of 1 for each damage condition 
and a FPR of 0.  

5.3 Results and Discussion.  

Figure 14 shows the damage detection rate for 
each scenario and sensor location plotted across 
speed, with N=35. The four lines represent the de-
tection rate for the undamaged bridge and for each 
of the three damage scenarios. Ideally, we would see 
the FPR of 0 for the undamaged bridge, and the TPR 
of 1 for each of the damage scenario. 
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The lowest speed consistently produces the best 
detection for all sensors, while the accuracy for oth-
er speeds is inconsistent across sensors. This may be 
due to increased noise or shorter signal duration 
(which reduce the effectiveness of our spectrum av-
eraging technique) for higher speeds. The sensor on 
the bridge detects damage nearly perfectly, validat-
ing our classification technique for the easier, direct-
monitoring case. Of the indirect sensors, those on 
the suspension were better than those on the wheel. 
This is likely because the suspension acts as a low-
pass filter, reducing the noise while preserving the 
low fundamental frequency of the bridge.  

 

  
Figure 15.The effect of the number of averaged runs on the de-
tection rate for the front suspension sensor at a speed of 1 m/s. 

Averaging a larger number of runs increases the TPR, while 
lowering the FPR. 

 
Figure 15 shows the effect of N on the classifica-

tion accuracy for the front suspension sensor at 1 
m/s. In general, accuracy increases as N increases. 
For some sensors and speeds, there was a clear di-
minishing-returns effect, while for others there was 
not. Contrary to what we would expect, scenario 4 is 
not consistently the easiest to detect. Inspection of 
the spectra reveal that the peak for the fundamental 
frequency appears wider and shorter as more mass is 
added to the bridge, decreasing the accuracy of the 
correlation matching method. 
 

6 CONCLUSIONS AND FUTURE WORK 

This paper presents initial work for detecting 
changes in bridge structures based on acceleration 
data from passing vehicles. We refer to this ap-
proach as indirect. We compare the results of the in-
direct with the traditional direct approach in which 
sensors are located on the bridge structure. 

An experimental setup that resembles a moving 
vehicle passing over a simply supported bridge was 
used to generate dynamic interaction data from sev-
eral physical scenarios. The scenarios consisted of 

Figure 14. Detection rate for each scenario and sensor location plotted across speed, averaging 35 runs. For each damage scenario, 
the curve represents the true positive rate (TPR), while for the normal (undamaged) case, the curve represents the false positive rate 
(FPR). Accuracy is consistently good at the lowest speed, with the sensors on the suspension providing the best accuracy of the indi-
rect sensors. 
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changes in the mass of the bridge structure generated 
by adding a localized mass at midspan.  

A detection procedure was developed to capture 
the shifts in the fundamental frequency of the 
bridge.  

The detection capability of the proposed signal 
processing approach is more stable across different 
speeds for acceleration data gathered in a direct 
fashion rather than in the indirect one. 

For the particular experimental setup used in this 
work and the different scenarios simulated, the sen-
sor location on the vehicle has a strong influence in 
terms of the detection capability of the different sce-
narios. The sensor located at the front of the vehicle 
over the suspension system outperformed those of 
all other sensor locations. 

Lower travelling speeds of the vehicle seem to be 
better for identifying changes in the natural frequen-
cy of the bridge than higher traveling speeds. 

Regarding the number of runs averaged to calcu-
late the true positive detection rate (TPR), there is a 
mild linear increasing trend over the quality of the 
detection. More significant is the reduction of false 
positive rate when increasing the number of runs. 

Future work will include an exploration of the 
sensitivity of the approach to smaller changes in the 
bridge structural system.  

We are also interested in examining the con-
sistency of the TPR trends across different speeds. 
We will study this by populating our experimental 
data with smaller speed intervals. 

We will also explore other types of changes that 
resemble damage scenarios in a real bridge structure. 
Such scenarios will consider frozen bearings and 
cracks. The first will be modeled by increasing the 
rotational restraint at the supports of the simply sup-
ported bridge. The latter will be simulated by a sec-
tion reduction of the supporting beam elements of 
the bridge. 
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1 INTRODUCTION 

1.1 The Need for Structural Health Monitoring 
 There are approximately 600,000 highway bridges 
within the U.S., and approximately 25 percent of 
them are currently rated as structurally deficient or 
functionally obsolete (Federal Highway 
Administration 2006)  

 Currently, bridges are inspected visually every 
two years. There is a strong interest to aid these 
inspection efforts with a more continuous, reliable, 
physics-based and less subjective procedure. This 
has led to a great deal of activity in structural health 
monitoring. Most of the current approaches consider 
data acquisition of bridges in a direct form, that is, 
by putting sensing devices at different specific 
locations on the structure. This poses a number of 
practical challenges, such as vandalism or 
involuntary damage of installed equipment, the need 
for a power source or complex energy harvesting, 
the initial and recurring costs associated with the 
monitoring system, and the need for extensive data 
processing and management at the bridge. Thus, 
there is an urgent need to explore alternative, more 
cost-effective means to monitor our complete stock 
of bridges on a regular basis. 

                                                 
1  Also affiliated with the Universidad de Concepción, 
Concepción, Chile. 

1.2 Overview of Proposed Approach 
In this paper, we describe a possible approach 

for performing structural health assessment that 
takes a markedly different tack. This approach is 
based on the collection of, and multiresolution 
pattern analysis of, data in the form of dynamic 
responses of vehicles passing over bridge structures. 
This approach can be considered as indirect, since it 
acquires information about the bridge from sensor-
equipped vehicles moving over the bridge, as 
described by Lin & Yang 2005. Since some bridges 
over which such vehicles travel will be monitored by 
sensor systems installed on the bridge, direct data 
gathered from the bridge itself can be used for 
validation and calibration of the vehicle-based 
monitoring system. Thus, this indirect approach can 
also be considered as complementary to the direct 
approach. The vehicle-based approach will allow for 
much broader coverage of the entire bridge 
population, as only a fraction of the bridges will 
likely by sensed directly due to initial and long-term 
maintenance costs of the installed monitoring 
systems.  

The data will be acquired from many passing 
vehicles (cars, buses and trucks) that are able to 
timestamp and locate themselves with respect to the 
bridge and make that data available for structural 
analysis.  The data can then be processed and 
analyzed with advanced signal processing and 

Exploring Indirect Vehicle-Bridge Interaction for Bridge SHM. 

F. Cerda1, J.Garrett, J. Bielak, R. Bhagavatula & J. Kovačević 
Carnegie Mellon University, Pittsburgh, Pennsylvania, USA. 

 
 

 
 

 
 

 

ABSTRACT:  In this paper, we explore an indirect measurement approach for bridge structural health 
monitoring (SHM) that collects sensed information from the dynamic responses of many vehicles travelling 
over a bridge and then makes extensive use of advanced signal processing techniques to determine 
information about the state of the bridge. We refer to this approach as vehicle-data driven and indirect. We 
discuss some of the advantages of this indirect approach over direct monitoring of structures. We simplified 
the vehicle-bridge interaction and used a numerical oscillator-beam interaction model to generate some 
preliminary interaction response data with which to begin to assess the validity of this approach. A 
Multiresolution image classifier was used to analyze the preliminary data. We present the basic idea behind 
this approach and preliminary results that demonstrate its viability.  
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pattern recognition techniques, including state-of-
the-art multiresolution techniques such as wavelets, 
to identify the existence, location and severity of 
damage. The idea is to infer damage from changes in 
global and local properties of the bridge and its 
structural response characteristics that are present in 
the vehicle dynamic response. Such structural 
response characteristics include resonant 
frequencies, mode shapes, local deflections, etc. 

2 PROPOSED APROACH 
 
As described in the previous section, our approach is 
based on merging two main concepts: 1) the sensed 
data will be collected from many vehicles moving 
over the structure of interest; and 2) the data will be 
collected and processed using advance image 
multiresolution techniques.  We now present a more 
detailed discussion of the added features of this 
approach with respect to a direct monitoring 
approach. We start by reviewing some of the 
literature on direct approaches, some preliminary 
research on indirect approaches, the advantages of 
using an indirect monitoring approach, damage 
identification based on moving loads, the practical 
advantages of having mobile monitoring and a 
description of the multiresolution classifier. 

2.1 Direct Approaches for SHM 
During the past two decades, structural health 
monitoring and damage assessment have been very 
active research areas, and have motivated several 
excellent review and overview papers, which 
highlight some of the most relevant approaches (e.g., 
Van der Auweraer & Peeters  2003; Farrar & 
Worden 2007).   Brownjohn (2006) describes some 
general and fundamental objectives for monitoring 
civil infrastructure and points out some historical 
applications. More specific review topics include 
wireless, structural health monitoring, design of 
devices, and the trend for localized processing 
(Lynch, 2007); vibration-based condition monitoring 
(Doebling et al. 1998, Carden & Fanning 2004); 
damage identification using inverse methods 
(Friswell 2006); unsupervised learning (Fulgate et 
al. 2000, Worden & Dulieu-Barton 2004, Worden & 
Manson 2007); and vibration-based condition 
monitoring methods (Carden & Fanning 2004). 

One of the widely used classifications for 
structural health damage identification is based on 
the level of detection attempted (Rytter 1993): Level 
1: determine presence of damage; Level 2: 
determine location of the damage; Level 3: quantify 
the severity of the damage; and Level 4: predict the 
remaining service life of the structure.  A 
modification to these four levels, as described by 

Farrar & Worden (2007) considers the determination 
of the “type of damage” as an intermediate level 
between Levels 3 and 4. This incremental 
identification definition is suitable for the proposed 
approach, as it identifies the difficulty of detecting 
local failures.   
 Most of the existing literature addresses direct 
measurement approaches, in which sensors are 
placed on the structural elements from which one 
wishes to collect information to be used for the 
damage identification. The next section discusses 
research that has been done on indirect approaches 
to SHM, where data about the structure is collected 
from other sources, such as vehicles moving over 
the structure. 

2.2 Indirect Approaches for SHM  
 Yang et al. presented an indirect approach in 
2004, with the sole objective of extracting bridge 
frequencies from the dynamic response of a moving 
vehicle. They considered the bridge structure as a 
simply supported beam and the vehicle as a sprung 
mass.  They derived an approximate analytical 
closed-form solution based only on the beam’s first 
mode, and decoupled the bridge and the vehicle by 
neglecting the terms that contain the ratio of the 
oscillator mass to the beam total mass. This solution 
allows for the identification of a few significant 
dimensionless parameters that dominate the vehicle 
response, such as: S = πv/Lωb, a normalized vehicle 
velocity, where v = vehicle velocity, L = length of 
beam, and ω b= bridge’s natural fundamental 
frequency; and µ = ωb/ωv, where ωv is the vehicle 
(oscillator) vertical natural frequency. By 
performing a general finite element study, the 
concept was shown to be extendable to more 
complex structures.  Later, Lin & Yang (2005) 
presented the experimental verification of the 
approach by using a four-wheel commercial light 
truck, towing a small two-wheel cart. They used 
accelerometers and velocity meters near the center 
of gravity of the cart to sense its vertical motion.  
The experiment also considered the use of a heavy 
truck that played the role of ongoing traffic. The 
authors concluded that it is feasible to scan the 
natural frequencies using the cart-based approach as 
the numerical study anticipated.  

Another paper by Yang et al. (2005) explores the 
potential applications of an indirect approach to 
SHM. In this paper, Yang and his colleagues 
focused on the participation of the different modes 
of the bridges vibration and the complexity of 
dealing with multiple oscillators traveling at 
different speeds. The position of each vehicle within 
the bridge is crucial for determining the contribution A72



of the different excitation sources (passing vehicles) 
to the dynamic response of the bridge when 
considering multiple oscillators.  Yang et al. (2005) 
also concluded that the first mode of the bridge was 
dominant in the dynamic response.  

Yang’s promising idea was not used for damage 
detection, but only for extracting the natural 
frequencies of the structure. Moreover, work done 
by Farrar indicates that natural frequencies by 
themselves are not good damage predictors (Farrar 
& Jauregui1998). The study by Farrar consisted of 
experiments on the I-40 Bridge used to compare five 
different damage assessment methods against the 
same set of data in order to contrast their detection 
capability. Different levels of damage were inflicted 
to a girder to test the sensitivity of the five methods 
considered. The studies found that resonant 
frequencies and modal damping are insensitive to 
low levels of damage, but experimentally 
determined mode shapes are more sensitive 
indicators. They also found that changes caused by 
environmental conditions can be as significant as the 
ones caused by damage.  

2.3 Damage Identification Approaches Using 
Moving Oscillators as Excitation Sources 

We now briefly describe some of the research efforts 
regarding moving loads for damage detection and 
experimental validation. Law & Zhu (2004, 2005) 
explored the changes in different damage indicators 
and the possibility of capturing those changes when 
considering the excitation of a moving oscillator on 
a beam. The flexural stiffness has been used as a 
damage index measure that has a good correlation 
with a vehicle’s response (Law & Zhu 2005). Other 
authors have presented a damage detection approach 
based on both the vehicle’s and the bridge’s 
response in the time domain (Majumber & Manohar 
2003). Yet others report the dynamic response of 
damaged beams subjected to moving masses 
(Mahmoud & Abou Zaid 2002, Bilello & Bergman 
2004), but these studies do not take into account the 
suspension system of a vehicle. This simplification 
can be well justified as dynamic response of the 
vehicle is far less important in terms of the overall 
load of the vehicle when considering a static and 
dynamic load separately. Experiments with moving 
masses over a sliding rail have been performed to 
validate mathematical models of damaged beams 
(Bilello & Bergman 2004).  

2.4 Practical Advantages of Indirect Measurements 
from Passing Vehicles 

In this section, we point out some of the issues that 
cause significant practical challenges for direct 

monitoring, which are absent or mitigated when 
using an indirect approach. Using an indirect 
approach to SHM will have a number of potential 
advantages.   
 The first issue is related to the powering of the 
sensors. Since direct monitoring requires that 
sensors be deployed on the bridge being monitored, 
there is a need to provide power for the sensors and 
their associated electronics and data transmission  
and storage devices.  A sustainable approach to 
providing this will likely consider energy harvesting 
in various forms, such as optimized solar energy 
(Alippi & Galperti 2008) or vibration based power 
collection systems (Beedy et al. 2006).  In the case 
of indirect monitoring, there is readily available 
energy from the vehicle’s electric system that 
completely eliminates the concern for how to 
provide power to the sensors while the vehicle is in 
operation. 
 The useful life of structures is much greater than 
the current reliable lifespan of most sensors. An 
indirect monitoring approach mitigates this issue 
because it will use data collected from many passing 
vehicles, which will have a variety of ages and thus 
a variety of ages of their sensor systems.  As 
vehicles are replaced, the sensors in them will be 
replaced as well.  In addition, the sensors will be 
protected from environmental conditions and the 
threat of vandalism, and will be able to be evaluated 
on a regular basis during routine vehicle 
maintenance intervals, whereas direct measurement 
devices require costly onsite sensor maintenance and 
are subject to harsh environmental conditions and 
vandalism. 
 The indirect monitoring approach will not cause 
traffic interruption, nor require the use of artificial 
loading devices, such as shakers or controlled load 
trucks. We consider the many moving vehicles on 
the bridge as both the excitation and sensing source 
for the sensing system. The basic idea is that the 
vehicles collect information about the dynamic 
vehicle-bridge interaction as they drive on the 
bridge.  

2.5 Multiresolution Classification Approach 
The task of classification is a standard signal-
processing task that involves assigning one of the 
possible classes to a given input signal. This is 
typically done by computing certain numerical 
descriptors, called features, on the given input, in the 
hope that these descriptors will be sufficient to 
discriminate among classes. For example, some of 
the commonly used features (and those we use in 
this work) are the Haralick texture features (Haralick 
et al. 1973). Thus, a generic classification system 

A73



has a feature extraction block followed by a 
classifier block (see Figure 1). 
 

 
Figure 1. Multiresolution classification system for  “Damaged” 
and “Undamaged” Labels. 
 

Kovačević’s lab has developed a new 
multiresolution classifier (Chebira et al. 2007c), that, 
instead of working on the original signal, passes it 
first through a multiresolution decomposition block 
generating a number of smaller-size signals, called 
subbands, in different subspaces. These subbands 
then each undergo separate classification, generating 
their own local classification decisions. In other 
words, each of the subbands is classified, each 
representing a possible classification of the actual 
signal. To reconcile these different possible 
classifications, the decision making block arbitrates 
and decides on the final label.   This arbitration can 
be in closed form (that is, a solution to a least 
squares problem is found) or open form (where a 
reward-punishment system is iteratively applied 
onto subband local decisions). There can be as many 
labels as desired to take into account the different 
levels of damage identification. Considering the idea 
of Existence, Level 1 of damage identification, 
classifying signals as being  “Damaged” and 
“Undamaged” (Figure 1) is the first experiment 
presented later in this paper.   
 In the research presented, synthetic data was 
created that would enable testing of the 
classification capability of the multiresolution 
algorithm for our application. The vehicle response 
vertical acceleration data was generated using a 
simplified numerical oscillator-beam interaction 
model that we describe below. 

3 OSCILLATOR-BEAM INTERACTION 
MODEL 

 
To explore the feasibility of this approach, an 
oscillator-beam interaction (OBI) model was 
implemented. It considers the coupling of the 
oscillator and the beam at a regular interval, ∆T. The 
algorithm iterates until the deflection of the beam at 
the point of interaction (zb) and the base degree of 
freedom of the oscillator (zv) converge. Only a few 
iterations are needed. Figure 2 shows a scheme of 
the implemented model. 

  
 

      
Figure 2. Oscillator beam model. 
 
The model was validated against the results reported 
by Yang et al. (2004). For the experiments we chose 
oscillators of three different vertical fundamental 
frequencies (1.1, 1.7, and 3.4 Hz) to represent a 
small vehicle, large family vehicle and a truck, 
respectively.  In addition, 30% critical damping was 
assumed for the different oscillators for modeling 
the shock absorbers and other energy dissipation in 
the vehicle. The beam is an idealization of a 40-m 
bridge, I=0.219 m4 (Kim & Kawatani 2008) and it is 
discretized into 10 finite elements. 

With some small changes to this numerical model, 
as described in the following list, we were able to 
produce synthetic response data for different damage 
conditions, such as: 
a. distributed section loss, such as that caused by 

corrosion, and modeled by a percent reduction of 
the moment of inertia of a beam finite element;  

b. a section crack, such as that caused by fatigue in 
steel elements, and modeled as a rotational 
spring, where the spring stiffness depends on the 
crack depth being modeled; and  

c. frozen bearings of bridge supports, modeled 
using rotational spring elements linked to the 
rotational degrees of freedom at the ends of the 
beam.  

The location and severity of these three damage 
conditions can be easily altered within the modeled 
beam. This allows a large number of different 
damage cases and associated response signals to be 
generated. In the research reported here, we first 
tested the ability of the approach to detect the 
absence or presence of section loss in different 
elements, and then considered an example in which 
different levels of damage were present. 

4 MULTIRESOLUTION CLASSIFICATION  
 
We now give a brief overview of the multiresolution 
techniques and wavelet-based approach we are 
using.  Multiresolution techniques have been 
extensively studied and used in signal and image 
processing over the past two decades (Daubechies 
1992, Vetterli & Kovačević 1995, Mallat 1999). We A74



call multiresolution techniques those signal 
processing tools that analyze and process signals 
across different frequency resolutions and scales. 
They have arisen in response to the inability of some 
standard techniques, such as Fourier analysis, to deal 
with nonstationary signals. For example, abrupt 
transitions in time cannot be captured using Fourier 
methods. An easy analogy is that with map 
programs on the Web, such as Google Maps. If we 
are looking into how to get to New York from 
Boston, the initial route will be at the 
scale/resolution of 50 km/1 in. Once close to New 
York, we will want more detailed directions, say to 
the Museum of Natural History, and would thus 
move to a scale/resolution of 2000 ft/1 in, which is 
the street level. In other words, we first investigated 
the global behavior of our signal, followed by its 
local behavior at a certain scale. This approach can 
be used in any situation where the signal is 
nonstationary. For example, we may assume that the 
data collected from a vehicle on a bridge will differ 
depending on time of day, day of the year, season, 
and many other factors. This is one of the main 
advantages of using this approach, as it enables the 
classification of new data based on a baseline 
provided by previous records. It takes into account 
modifications of the response by various factors, 
such as seasonal changes or daily temperature 
variations, as long as sufficient data is available.  

The multiresolution techniques achieve their 
goal by decomposing a signal into zooming spaces 
(e.g., coarse subspaces and detailed subspaces) and 
are implemented by a signal-processing device 
called a filter bank. This filter bank then implements 
a specific multiresolution transform. Some well-
known transforms that fit within this framework are 
the discrete Fourier transform (DFT) and the 
discrete cosine transform (DCT). Others, originating 
in the multiresolution literature, are the discrete 
wavelet transform (DWT) and a family of wavelet 
packet (WP) transforms. Which one of these to use 
depends on the specific application at hand. For 
more details, see, for example, Vetterli & Kovačević 
(1995). 

One possible characterization of multiresolution 
transforms is in terms of whether they represent the 
signal in a nonredundant or a redundant fashion. 
Redundancy often leads to increased accuracy, as 
has been found in a host of bioimaging problems 
(see Chebira & Kovačević 2008a and references 
therein). One possible example of the power of 
multiresolution techniques in pattern classification is 
that developed for the classification of Drosophila 
embryo development (Kellogg et al. 2007). Using a 
highly accurate multiresolution classification 

algorithm developed by Kovačević and her group, 
the process is now automated and reproducible, with 
accuracy greater than 98% (Kellogg et al. 2007).  

The use of wavelets in structural damage 
identification is relatively new. Melhem & Kim 
(2003) used continuous wavelet transform and 
Fourier analysis to detect damage on two full-scale 
concrete structures (a prestressed beam and 
pavement on grade) subjected to fatigue loads. 
Acceleration and deflection measurements were 
taken directly from the beam.   Differences between 
initial and final damage states were significant and 
the wavelet analysis allowed for the identification of 
damage progression on both of the studied 
structures. Another study by Sun & Chang (2004) 
used a statistical wavelet-based method for structural 
health monitoring, which considered progressive 
damage on a steel cantilever beam. Sun concluded 
that indicators from the Wavelet Packet Signature 
(WPS) are excellent indicators for monitoring 
structural health condition. They are sensitive to 
structural damage and insensitive to measurement 
noise.  

A recent paper by Law et al. (2008) makes use 
of wavelet transforms for identifying a moving load 
over a beam and the prestress condition. In Law’s 
work, the measuring points are located at the bottom 
of the beam. The forces of two moving axles and the 
prestress levels are identified successfully over time 
with high accuracy.  

4.1 Multiresolution Algorithm for Classifying 
Signals from the OBI Model 

The multiresolution classifier we use here was 
originally developed for images. For the purpose of 
testing whether it would make sense to use it for 
classifying the signals taken from a vehicle moving 
over a bridge, we had to produce images from the 
collected vehicle data. This requires the images to be 
at the same scale, considering the maximum and 
minimum values of the whole set of data as the scale 
limits. As an example, Figure 3 shows an image 
before scaling. It corresponds to a 2% inertia 
reduction on an element adjacent to the midspan of 
the beam. The ordinate represents the different 
velocities of the oscillator, and the abscissa refers to 
the relative position of the oscillator with respect to 
the beam. The colors represent the acceleration 
value of the oscillator. The scale and frequency 
content of the image represent the dependency of the 
response on the position and velocity of the 
oscillator. 

At Level 1, the multiresolution decomposition 
takes an image and produces a number of smaller A75



images from which the original one can be 
reconstructed, if needed (see Figure 4). At Level 2, 
the same, or different, multiresolution 
decomposition is applied to a subset, or all, of the 
images from Level 1. The process can be repeated 
many times, at each level producing subbands at a 
different resolutions/scales. For example, Figure 4 
shows a preprocessed scaled input image, and four 
subbands at Level 1. In our experiments we used a 
2-level full decomposition (meaning at each level, 
each subband is split into four subbands at the next 
level). The left-most subband is typically the one 
that carries the global characteristics of the signal 
(so it very much looks like the higher-level image, 
but blurred), while the other three carry the 
necessary details to reconstruct the original (these 
are the local changes, or, edges). 
 

 
Figure 3. Raw image representation of acceleration response of 
traveling oscillator. 
  

When small amounts of data are available, as is 
the case here, a technique called leave-one-out cross 
validation (LOOCV) is used. LOOCV attempts to 
estimate the generalization error of the classifier, 
which is effectively the capability of the classifier to 
correctly classify unseen data (i.e., data that has not 
been trained on). Let N be the number of data 
samples, [x1 x2 … xN], for a particular class of 
images to be classified. For a particular data sample 
xi, the classifier is trained using samples [x1 … xi-1 
xi+1 … xN] and is tested over the sample xi. This is 
repeated for each available data sample that results 
in N separate classifiers being trained and tested. 
The overall accuracy of the classifier is the average 
accuracy over these N results. 

 

 
 
Figure 4. Multiresolution decomposition (Level 1). 
Preprocessed original image (top); four subbands (bottom). 

4.2 Experimental Setup and Results 
We conducted two experiments with the acceleration 
response of the oscillators obtained from the 
numerical model described in Section 3.  

Experiment 1: Existence of damage classification.  
In this experiment, we attempted to classify the 
bridge into one of two categories: “Undamaged” (5 
cases, Table 1); or “Damaged” (Levels 1-4 lumped 
together, 25 cases, Table 1).  Thus, with N=30, there 
were 30 two-class classification experiments for 
each of the three oscillators and each of the 10 
elements.  
 
Table 1.  Damage cases considered. ______________________________________________ 
Label      Damage range [%]  # of cases  
______________________________________________ 
Undamaged    0-4      5  
Level 1      5-9      5 
Level 2     10-14      5 
Level 3     15-29      8 
Level 4     30-55      7  _____________________________________________ 

 
Table 2 shows the overall classification accuracy 

for the “Undamaged” and “Damaged” cases over 
each element. These results indicate that this 
approach is able to achieve very high accuracy in 
classifying a damage condition occurring over an 
element near the midspan for the three oscillators.  
 
Table 2.  Two-class damage classification accuracy (in %). _________________________________________________ 
Element     Oscillators        Accuracy  

1.1Hz     1.7 Hz     3.2Hz 
(small veh.)  (family veh.)   (truck)      _________________________________________________ 

1    96.7    83.3    76.7    85.6 
2     76.7    86.7    73.3    78.9 
3    96.7    86.7    86.7    90.0 
4    93.3    93.3    96.7    94.4 
5    93.3    93.3    96.7    94.4 
6      100.0    90.0      100.0    96.7 
7     93.3    93.3    80.0    88.9 
8     83.3    90.0    90.0    87.8 
9    83.3    86.7    73.3    81.1 
10    90.0    83.3    83.3    85.5 _________________________________________________ 
Accuracy 90.7    88.7    85.7    88.4  _________________________________________________ 

 
Note that the first oscillator achieves the highest 

average accuracy, followed by the second and then 
the third. One might infer that the larger the load, the 
lower the accuracy. These results are preliminary 
because they use a highly idealized beam to 
represent a bridge.  We must run more experiments 
involving structures with different natural 
frequencies and different vehicles to validate this 
conjecture. Also, in this experiment, it was possible 
to determine the damage in some elements very 
accurately (for example, Element 6), while not for 
others (for example, Element 2 near the end of the 
beam). Overall, the multiresolution classification 
approach achieved an average accuracy of 88.4% in 
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determining the existence of damage. We are thus 
encouraged that a more comprehensive investigation 
of this approach will improve these accuracies. 

Experiment 2: Severity of damage classification. 
This experiment considers an undamaged class and 
four damage levels for a total of five classes/labels 
as described in Table 1. With these five labels, there 
were again N=30 classification experiments, but 
there were five classes to be distinguished for each 
oscillator and element. Table 3 shows the overall 
classification accuracy for the five classes 
(“Undamaged” and “Damaged” levels 1-4) for each 
oscillator and beam element. The results shown in 
Table 3 can be read as: the percentage of accuracy to 
classify an image representation (see Figure 3) of the 
vehicle response as a specific damage level (Table 
1), on a particular element and considering a 
particular vehicle. Note that what is reported in the 
table is the aggregate accuracy of the methodology 
for distinguishing each of the five levels of damage.  

First, observe that, as expected, the accuracies in 
Experiment 2 are lower compared to those from 
Experiment 1. This is because it is harder, using the 
same number of actual collected signals, to 
distinguish between five different levels of damage, 
as opposed to just the undamaged/damaged 
situations. In contrast to Experiment 1, the middle 
oscillator gives the most accurate results in 
Experiment 2. Overall, the multiresolution approach 
achieved an average accuracy of 71.2% in 
determining the severity of the damage. 

5 CONCLUSIONS 
 
We have presented an alternative approach for 
indirect monitoring of the structural health of 
bridges through data collected from vehicles passing 
over a bridge. To test the validity of this approach, 
we created a numerical model of the interaction 
between a simple oscillator and a simple beam and 
subjected the beam to different levels of section loss 
at different locations.  We then subjected the 
simulated responses to these damaged states to a 
multiresolution classification system in order to 
determine how accurately the damage level could be 
classified.  The results of these two experiments, 
while limited and very preliminary, seem promising. 
We are encouraged to further pursue the refinement 
and evaluation of this approach.   
 
 
 
 
 
 

Table 3 Five-class severity of damage classification accuracy 
(in %). _________________________________________________ 
Element     Oscillators        Accuracy  

1.1Hz     1.7 Hz     3.2Hz 
(small veh.)  (family veh.)   (truck)      _________________________________________________ 

1    66.7    80.0    83.3    76.7 
2    66.7    76.7    66.7    70.0 
3    80.0    73.3    40.0    64.4 
4    60.0    66.7    70.0    65.6 
5    76.7    80.0    63.3    73.3 
6    76.7    80.0    73.3    76.7 
7    76.7    73.3    70.0    73.3 
8    73.3    66.7    50.0    63.3 
9    66.7    83.3    66.7    72.2 
10    73.3    80.0    76.7    76.7 _________________________________________________ 
Accuracy 71.7    76.0    66.0    71.2 
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